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Figure 1.1. Int-ext process (left) and typical PV-isotherm of (water + 

superhydrophobic grafted silica) system (right) 
During this forced intrusion (int) such HLS stores a large amount of energy arising from two sources: i) the 
mechanical energy associated to pressure ( ܹ௧ ൌ ܲ௧ ܸ௦) and heat extracted from the environment ± heat of 
intrusion.1,2,8 Spontaneous extrusion (ext) of the non-wetting liquid (NWL) from the pores can be provoked by 
decreasing the pressure below a certain critical value (extrusion pressure ܲ௫௧) and is accompanied by the release of 
heat ± heat of ext. Int-ext process is an endothermic process related with solid-liquid interface development-reduction, 
associated with extraction of heat ȟܳ from the environment.1,2,8 This heat can be very large, up to three times the 
mechanical energy spent for triggering intrusion.9 Thus, int-ext is a hysteretic process ( ܹ௧  ܹ௫௧�����ܳ௧ 
ܳ௫௧) that allows harvesting thermal energy from the environment ± a kind of heat pump. 
Until recently the dissipation mechanism during int-ext was not known. In other words, the energy balance (or the 
first law of thermodynamics) was not known for such systems and it was not clear what ZDV�WKH�IDWH�RI�WKH�³ORVW´�
energy. However, recently three members of the current consortium (CICe, USK, KPI) have shown that a large 
fraction of WKLV� ³ORVW´� HQHUJ\ is transformed into electrical energy generated via nanotriboelectrification 
during mutual displacement of a non-wetting liquid and a porous material.1,2 
This discovery enables a unique highly efficient way for harvesting ambient heat and mechanical work recovery, 
transforming them into electricity. This paves the way for the development of a paradigm-shifting device, an 
int-ext nanotriboelectric enabled heat pump exploiting dissipated mechanical work to extract energy from the 
environment producing electric current. This is illustrated in Figure 1.2. At a variance with standard materials, 
compression of HLS is endothermic, i.e. a net heat flux from the environment to HLS takes place during a complete 
int-ext cycle (Figure 1.2b). In practice, HLS can act as a heat pump, using some energy to absorb heat from the 
environment, which nanotriboelectrification allows to transform into electric current.  

 
Figure 1.2. Energies involved in compression of a) ordinary 
material and b) non-wetting liquid + porous material system 

(HLS) 
It is well-known that heat pumps demonstrate ³HIILFLHQF\´�(or coefficient of performance) much higher than 100 %, 
reaching values as high as 500 %.10 In other words: one invests one energy unit obtaining five. At first sight this 
seems thermodynamically impossible, however, one must realize that heat pumps do not produce thermal energy 
from electricity, they simply use electricity to harvest heat from environment, such as from ambient air, ground or 
water. Being available in the environment it is not considered an energy cost. Similarly, compressing HLS provokes 
a net incoming heat flow in the range of ܳ௧ǡ௫௧ א ሺͳͲ െ ʹͷሻܬ�Ȁ݃ ڄ  For example, grafted (silica + water) 1,8,9.݈݁ܿݕܿ
HLS, which is experimentally demonstrated to operate at compression-decompression (int-ext) frequency of 20 Hz,11 
can produce an incoming heat flux of (200 - 500) W/g. This suggests that the proposed int-ext activated 
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sibilities may be hypothesized. Consider a possibility
where the liquid-vapor interface, initially at the top of
the groove, starts moving down; that is, it starts wetting
the sides of the pillars (Figure 3b). The transition is in
general a nonequilibrium process where the local contact
angle is not necessarily equal to the equilibrium value.
The surface energy will change during transition. As-
suming that the filling of the grooves happens below the
projected area, Ac, of the Cassie drop, the energy at an
intermediate stage is given by

where y is the location of the interface from the bottom
of the groove (Figure 3b) and Gy is the drop energy at that
state. As the liquid fills the grooves, Sc and Ac should
changebecause somevolume ismovingoutof the spherical
liquid capabove the substrate. This in turn should change
the energy, Gc, but we will assume these changes to be
negligible compared to the surface energy changes (the
second expression on the right-hand side of eq 6) due to
the wetting of the grooves. This assumption is justified
because the surface area per unit volume is much larger
in the grooves compared to the spherical liquid cap. Gc

and Ac are therefore assumed constants in eq 6.
Equation 6 implies that the energy of the drop at

intermediate states is larger than Gc for θe > 90°. The
maximum value is reached at y ) 0 when the liquid has
filled thegroovesbut the liquid-solid contact at thebottom
of the valley is yet to be formed (Figure 3c). When the
liquid wets the bottom of the valley, the corresponding
change in energy is given by -(1 + cos θe)σlv(1 - φs)Ac;
that is, the energy of the system decreases. The liquid
would then proceed towet a greater area of the substrate
(Aw > Ac) to eventually reach the equilibrium shape of a
Wenzel drop at the energy Gw. Since we are assuming θr

c

> θr
w, we have Gc > Gw, as argued above.

The maximum energy state (Gy at y) 0) among all the
intermediate states can be used to obtain an estimate of
the barrier energy for the transition of a Cassie drop to
a Wenzel drop, GB1.

Even if the Cassie drop, on a surface roughness made of
pillars, is transitioning to aWenzel state at lower energy,
it has to go through a higher intermediate energy state.
Hence, energy must be provided to the drop to enable
transition. The transition can be enabled, for example, by
depositing the drop from some height,5 by pushing the
drop,4 or simply due to its own weight.6

A different estimate for the energy barrier can be
obtained by considering the Wenzel drop but with the
liquid-solid contact yet to be formed at the bottom of the
valleys. The barrier energy of this state, GB2, is given by

The actual wetting of the grooves may not occur as
hypothesized here. It is quite possible that the liquid does
not wet the grooves all at once, as supposed above, but
does so in parts. If that is the case, then the energy barrier
will be less than that estimated in eqs 7 and 8. Another
way of looking at this is the following. At the end of the
transition, there is a net decrease in the energy of the
drop equal to Gc - Gw (since we are considering a lower
energy Wenzel state). We could then assume that part of
this energy is available to overcome the energy barrier
estimated above.

Wehaveassumedthatgravitydoesnotplayasignificant
role in determining the shape of the drop either in the
Cassie state or in the Wenzel state. This assumption is
reasonable if the drop radius, R, is ,acap, where acap )
(σlv/Fg)1/2 is the capillary length of a liquid of density F and
g is the gravitational acceleration. For water, acap ) 2.7
mm; a spherical water drop of radius acap weighs 82 mg.
Thus, the water drop should be smaller than 82 mg for
thegravity effects tobeof little significance indetermining
the shapes of theCassie andWenzel states.We canrestate
the above condition in terms of a nondimensional pa-
rameter. We define the Bond number as Bo ) (V/Vcap)2/3
) (m/mcap)2/3, where m is the mass of the drop and mcap is
the mass of a drop of radius acap. V’s denote the corre-
sponding volumes. Bo denotes the square of the ratio of
the length scale of the drop to the capillary length scale.
The drop shape is almost spherical if Bo , 1. Even if
gravity plays an insignificant role indetermining thedrop
shape, it can play an important role in the transition from
a Cassie to a Wenzel drop. This will be discussed next.

At small Bo values, the effect of gravity is to make the
drop shape only slightly nonspherical. This lowers the
center of mass of the drop by some height, δ, compared
to a perfectly spherical drop. The corresponding decrease
in the potential energy of a drop, that has a superhydro-
phobic contact with the surface, can be estimated as13

where g is the gravitational acceleration.
Next, we estimate the potential energy change when a

drop transitions fromaCassie to aWenzel state. Sincewe
are considering a lower energy Wenzel state, which has
a lower apparent contact angle, the center of mass of the
Wenzel drop is lower. The change in the gravitational
potential energy during transition is given by

(13) Mahadevan, L.; Pomeau, Y. Phys. Fluids 1999, 11, 2449.

Figure 3. (a) Side view of the liquid on top of the pillars. The
liquid interface hangs from edge to edge of the pillars. (b) An
intermediate state in which the liquid is entering the valley as
a drop transition from a Cassie to a Wenzel state. (c) An
intermediate state during transition where the liquid has not
yet wetted the bottom of the valleys.

Gy ) Gc - (1 - y
H)(r - 1)cos θeσlvAc (6)

GB1 ) Gy)0 ) Gc - (r - 1) cos θeσlvAc (7)

GB2 ) Gw + (1 - φs)(1 + cos θe)σlvAw (8)

mgδ ∼
(mg)2

σlv
(9)
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filled with liquid,and the contact angle is then given by a Cassie average
between θ, the angle on the solid, and 0 the angle of the liquid on itself.
From a practical viewpoint, the two superhydrophobic states thus
appear to be extremely different: although the apparent (advancing)
contact angles remain comparable, the adhesion is dramatically
increased in the Wenzel state.

In a second series of experiments, we tried to induce direct
transitions between both states.We started from a drop deposited on the
microtextured surface, and increased the pressure exerted by this drop
on its substrate. Two different methods can be used for this purpose.
(1) We varied the drop size: the larger the drop, the smaller the pressure.
Large drops are flattened by gravity g to a thickness h first described by
Taylor13: h = 2asin(θ*/2), where a is the capillary length (a = (γ/ρg)1/2,
with γ the liquid surface tension and ρ its density;a is 2.7mm for water).
Such a flattened drop exerts a hydrostatic pressure ρghon its substrate—
of the order of 50Pa in our case.For drops small enough that the effect of
gravity is negligible (that is, radius R smaller than a), the internal
pressure, ∆P, in the superhydrophobic limit is given by the Laplace law
(∆P = 2γ/R), which is also the pressure exerted by the drop on its
substrate, hence the smaller the drop, the larger the pressure. We let R
vary between 4 and 0.9mm,which allowed us to increase the pressure up
to 150Pa.(2) To reach higher pressures,we placed the drop between two
identical substrates, and compressed it by using a micrometric screw,
which also allowed us to measure the gap x between the plates.
The pressure was simply deduced using the Laplace equation
(∆P = 2γ |cosθ* |/x, for x << R). Figure 2 shows a sequence of these

experiments (note that because of the texture, the surface is iridescent
and reflects in the drop, giving the colours). For each pressure ∆P, we
took numerical micrographs of the edge of the drop, from which we
could deduce the contact angle θ* with a precision of 5°; its value is
plotted as a function of ∆P in the same figure.

It is observed that the contact angle first has a plateau value,which
corresponds to the air-pocket regime described above. The contact
angle then decreases, which can be interpreted as a progressive
sinking of the drop inside the texture (as seen in equation 2,exploring
the textures, that is, increasing φs, leads to a decrease of θ*). For high
pressures, the contact angle tends towards θ* = 145 ± 3°, in close
agreement with the value obtained by condensing a water drop.
We thus interpret this limit as a Wenzel state.

We then monitored what happens when relaxing the pressure.
In Fig. 3 is a series of snapshots showing the separation between the
plates after imposing a pressure of about 250 Pa.Although the contact
angle hysteresis was very small in the Cassie regime, a huge hysteresis
is observed here, which reveals the irreversibility of the transition.
The receding contact angle θ*r is found to be 35–40°,and the hysteresis
about 105°, again in good agreement with our data for a condensed
drop. This confirms the hypothesis of a Wenzel state in this limit of
high pressure. Then, the drop can pin on the surface textures, which
makes it split into two identical droplets while the plates 
are separating.

The value of the receding contact angle after such a relaxation is also
plotted in Fig. 3, as a function of the pressure imposed on the drop.
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Figure 3 Separation of the two plates after having imposed a pressure ∆P of about 250 Pa.The (receding) angle is much smaller (around 40°),and the drop sticks on both plates,
which eventually leads it to split in two similar pieces.The receding angle θ*r,observed after imposing and relaxing a pressure ∆P, is plotted as a function of ∆P (open points).The filled
points correspond to drops deposited on a single surface,and ∆P is then the pressure applied by the drop on the surface; its variation is obtained by taking different drop sizes.The upper
and lower dotted lines respectively indicate the value of θ*r for a drop deposited on the substrate or obtained by condensing a vapour. In the Cassie regime (upper points) the contact-angle
fluctuations were small,and the error bars are therefore of the size of the data points.
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Atomistic Mechanism
an extensive review of techniques for producing super-
hydrophobic surfaces and their possible technological applica-
tions). This has promoted applied research aimed at developing
decorated surfaces having a high contact angle, with an
associated low hysteresis, a large slip length, and that can
maintain the system in the CB state for the widest interval of
external conditions.
Fundamental research is more focused on the identification

of the factors controlling the stability of the CB vs W
states,20−23 a subject that has been investigated also by
continuum24 and atomistic25,26 simulations. Another objective
is to assess whether CB/W metastabilities can exist,17,27−29 i.e.,
whether a liquid can be kept in the CB state in conditions in
which the thermodynamic stable state is W (and vice versa).
This phenomenon can happen when the free energy surface
presents one absolute minimum and one or more local minima
separated from the former by large free energy barriers (i.e., as
compared to the thermal energy kBT). Metastability can also
have a technological importance, as in practice, it represents a
way of extending the range of stability of the CB state. On the
other hand, a negative consequence of metastability is that it
might prevent/slow down the “dewetting” process (transition
from W to CB). Thus, the identification of factors controlling
the height of these barriers is a subject of intense research.
Metastabilities and hysteresis make the investigation of the

CB/W phase transition by experiments or (atomistic)
simulations very difficult. A first step toward the complete
understanding of this process would be the determination of
the density (ρ)−temperature (T) equilibrium phase diagram.30

We aim at achieving this objective by computing the free
energy of the CB vs W phases at various ρ and T by atomistic
simulations. To this end, we will use the combined restrained
molecular dynamics - parallel tempering31 (RMD-PT)
approach, which is well-suited to dealing with systems bearing
known and unknown metastabilities. In addition to the phase
diagram, by computing the free energy along the path
connecting the CB and W states, we quantify the relevant
free energy barriers present in the system, clarifying whether
CB/W metastabilities can exist in the investigated system.
Finally, by analyzing the atomistic configurations along this
path we try to identify the mechanism of the transition.
Previous experiments and simulations have shown that the

CB/W phase diagram and transition rate depend on many
factors: the chemical nature of the liquid, the intrinsic
hydrophobicity of the material composing the surface,32

whether the liquid is deposited as a nano/micro droplet or in
bulk (see Figure 1), the characteristics of the corruga-
tions2,33−36 of the surface (shape,37 width, and height25,26 of
the corrugations), and many more. In the present work, we
focus on fundamental aspects of the CB/W transition, in
particular, on the ρ−T phase diagram of a groove of aspect ratio
close to unit. We postpone to future studies the investigation of
different aspect ratios and geometries on the thermodynamics
and kinetics of the transition.
We consider the case of a bulk Lennard-Jones liquid (LJ)

contained between two planar walls with a nanoscopic
decoration on one of them (see Figure 2). The surfaces, also
formed by LJ particles, interact with the liquid via a modified LJ
potential (see next section) that can be tuned to achieve the
desired hydrophobicity. The essential ingredients giving rise to
the hydrophobic effect are the liquid being close to phase
coexistence with its vapor and liquid−solid interactions being
significantly less attractive than liquid−liquid interactions.38 In

view of this, LJ liquids have often been employed in studying
the hydrophobic effect. For this reason, and for its simplicity,
we consider that it is suitable for a fundamental study.
Anticipating our results, we mention that the CB/W picture

is insufficient to represent our system as we identify two CB
states, characterized by different values of the curvature of the
meniscus. At intermediate T, the low curvature CB state is
more stable, while the high curvature CB state becomes more
stable at lower T. We show that, at a variance with what was
predicted by macroscopic theories,39 at the nanoscale the CB
state can also be stable in the case of moderate hydrophilic
surfaces (θY ≲ 90°, with θY being Young contact angle). We
provide evidence that metastable states separated by stable ones
by large free energy barriers (10 kBT or more) are supported by
the considered system over a wide range of temperatures. This
confirms that rare event techniques are necessary to study the
CB/W phase diagram/transition, as brute force simulations
may remain trapped in these metastable states. Concerning the
transition mechanism, we found that, at a variance with what
was proposed in literature,21,40,41 the CB/W transition follows
an asymmetric path, with the formation of a liquid finger on
one side of the groove and a vapor bubble on the opposite side.
This path can still be explained in terms of macroscopic
theories once unnecessary assumptions are lifted.

■ METHODS
In this section, we give an overview of the restrained molecular
dynamics - parallel tempering method (RMD-PT) method. The
readers already acquainted with these tools, or those uninterested in
the simulative details, may proceed directly to the Results and
Discussion section.

The free energy calculations are performed using the RMD-PT
method (see Orlandini et al.31 for a detailed description). In RMD-PT,
we combine a specialized version of the Maragliano and Vanden-
Eijnden TAMD42 method with parallel tempering (PT).43,44 Atoms
are evolved according to the following equation of motion

β̈ = −∇ +m U zr r( , ) thermo( )r
k (1)

where m is the physical mass, β = (kBT)
−1, and thermo(β) indicates

that the atoms are coupled to a thermostat at β. The potential Uk(r, z)
= V(r) + k/2[ε(r) − z]2 is the sum of the physical (V(r)) and
restraining potentials. ε(r) is a suitable collective variable (CV) and z
is its target value. Let us consider the following average:

Figure 2. Cartoon of the simulation box. Data are reported in
Lennard-Jones units. H denotes the distance between the walls, L the
computational box width, and h and l the height and the width of the
groove, respectively. The thickness of the simulation box is 11 and the
groove goes all through it along the z direction. The dashed rectangle,
of height cy and width cx, represents the cell used for the calculation of
the collective variable (see text). The simulation box is periodically
replicated along directions x, y, and z.

Langmuir Article

dx.doi.org/10.1021/la3018453 | Langmuir 2012, 28, 10764−1077210765

Langmuir 2012, 28, 10764
Chem. Phys. Lett. 2006, 426, 168

∫
∫

τ ε

ε β

β

= − −

=
− − −

= −∇

τ

τ

→∞

− ⎛
⎝⎜

⎞
⎠⎟

f z t k t z

k z U z

z

z

r

r r r

( ) lim 1 d [ ( ( )) ]

d ( ( ) ) exp[ ( , )]

( )

ln ( )

k

k

k

z

k

0

1

A
A
A (2)

where Ak(z) = ∫ dr exp[−βUk(r, z)] and A = ∫ dr exp[−βV(r)] is
the canonical partition function of the real system. Since A is z-
independent, its introduction does not affect our argument, but it is
necessary for the interpretation of f k(z) as the derivative of the free
energy. The second equality in eq 2 stems from the assumption that,
apart from the direction ε(r), the system is ergodic. f k(z) is the
derivative of Fk(z) = −β−1 ln[Ak(z)/A]. Noting that limk→∞
exp[−βk/2(ε(r)−z)2]/(2π/βk)1/2 = δ(ε(x) − z), in this limit we
have f k(z) = ∇zFk(z) → −β−1∇z ln Pε(z). Here, Pε(z) = ∫ dr
w(r)δ(ε(r) − z) is the probability that ε(r) = z, with w(r) denoting
the canonical probability distribution. Recalling that the free energy of
a CV is defined as F(z) = −β−1 ln Pε(z), we find that in the proper
limits eq 2 is an estimate of the derivative of the free energy: ∇zF(z).
The time integral in the second term of eq 2 can be estimated by MD,
with atoms evolving according to eq 1. This proves that by restrained
MD we can estimate the derivative of the free energy with respect to
one CV. The free energy profile can then be computed by numerical
integration of f k(z) (i.e., thermodynamic integration45).
In the above reasoning, we made the critical assumption that the

only CV bearing metastabilities is ε(r). When this is not the case, MD
is not efficient at sampling the distribution exp[−βUk(r, z)]/Ak(z).
This problem can be solved by combining RMD with parallel
tempering (PT).43,44 In PT, the simulated system is composed of M
replicas of the original system. All replicas are evolved by RMD at the
same z value but at different temperatures. From time to time, a

swapping between the configurations of two replicas, denoted by χ and
ν, is attempted and accepted with a probability

β β
→ →

= − − −
χ ν ν χ

ν χ χ ν

a

U z U z

r r r r

r r

( , )

min{1, exp[ ( )( ( , ) ( , ))]}k k
(3)

where βν = 1/kBTν and βχ = 1/kBTχ and rν and rχ are the
configurations of the ν and χ replicas, respectively. Assuming that Tν
≫ Tχ, the replica ν has a higher probability to overcome (free) energy
barriers possibly present in directions other than ε(r). This results in a
higher efficiency of PT at sampling multimodal restrained probability
density functions, thus solving the problem of unknown CVs bearing
metastabilities.

The RMD-PT simulations described above have been performed
using the LAMMPS software package46 “driven” by the PLUMED
code47 for rare event simulations. In LAMMPS, we implemented the
modified LJ potential governing the liquid/walls interaction, and in
PLUMED, we added a CV suitable to study the CB/W transition (see
Results and Discussion). To make the calculation computationally
more efficient, we used the linked-cell based reordering algorithm48

that, in the case of a liquid sample, allows us to reduce the
computational time by up a factor of 4.

■ RESULTS AND DISCUSSION
The system for which we study the CB/W phase diagram and
transition consists of a LJ liquid contained between two planar
walls shaped as shown in Figure 2. The walls are also made of
LJ particles, which are kept fixed at the lattice positions of a
face-centered cubic (FCC) crystal. The density of the walls’ LJ
particles is higher than that of the corresponding crystal at the
thermodynamic conditions of the system so as to prevent
crystallization of the liquid. The liquid and walls particles

Figure 3.Main panel: F(z) profiles at selected temperatures and three densities: 0.742 (top), 0.732 (middle), and 0.725 (bottom). The free energy is
reported in LJ units. The integration constant of the thermodynamic integration is set such that the free energy at z = 200 is equal to zero. In the
three panels on the right, we report the enlargement of selected F(z) curves. The blue curve in the lower right diagram is shifted. For the sake of
clarity, the error bars49 are reported only for the curves shown in the right-hand side panels. In general, the maximum error is ≤16.5, ≤ 12.5, and ≤15
for the curves at ρ = 0.742, 0.732, and 0.725, respectively.
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F (z) = �kBT logP (z)

our simulations, as we do not have trajectories going from CB2
to W. In fact, RMD-PT provides sets of configurations
extracted from the probability density function conditional to
ε(r) = z at fixed z (see Methods). These configurations
represent highly probable states at a fixed value of z. We note
that, for some z, there exist, at least from visual inspection, two
classes of specular atomistic configurations that break the
reflectional symmetry with respect to the central y−z plane. An
example is provided in Figure 9A where the plots refer to

smoothed instantaneous density fields ρ̃z(x).
52 A transition

between the two asymmetric states was never observed in a run
without PT. This is an indication that they represent free
energy minima of unknown collective variables (belonging to
the subspace orthogonal to ε(r)) that are separated by large
free energy barriers. Only using PT, these free energy barriers
can be overcome, and the symmetry of the ensemble averaged
ρz(x) is recovered (see Figures 5 and 6 for ρz(x) in equilibrium

states, and Figure 9B for the same field along the transition
path). This observation suggests that the atomistic mechanism
may follow unexpected asymmetric paths.
To make this argument independent of subjective observa-

tion, we apply cluster analysis59 to the instantaneous density
fields generated by RMD-PT in order to group similar
configurations into clusters (an extended description of this
approach is given in Appendix 1). A transition path is then
extracted as the sequence of clusters at successive values of z
that are the closest to each other. The concepts of “similarity”
and “proximity” need the introduction of the notion of distance
between two instantaneous density fields and between two
clusters. The reader interested in the algorithmic details is
referred to the Appendix 1; for the moment, we only mention
that we measured the distance between two configurations
indexed by k and k′, corresponding in general to two different z,
in terms of the L2-norm of the density field, Δρ̃zz′kk' = [∫ dx
(ρ̃z

k(x) − ρ̃z′
k'(x))2]1/2. Once clusters are formed at each z, a

representative of each cluster is selected, the medoid, that is the
element of minimal average dissimilarity with all the other
elements of the cluster. A ρ̃z(x) vs z trajectory is built starting
from one medoid at z = 1800, that corresponds to the
transition state (maximum of the free energy F(z)). For this
medoid, we identify the closest medoid at the next z value. This
procedure is iterated for any pair of contiguous z, moving
toward CB2 and toward W until the complete sequence of
clusters connecting the two states is constructed. The entire
process is repeated for another cluster at the transition state,
until the paths starting from all these clusters have been
identified.
We applied this analysis to the simulations at ρ = 0.732 and

T = 0.81. As a first remark, we mention that we were able to
identify two well-separated clusters for z ∈ [1600, 1800], while
at lower (z ∈ [1200, 1600)) and higher (z ∈ (1800, 2000)) z,
our data are better represented by a single cluster. This
confirms that the transition can proceed along two different
paths. These paths initially coincide and then split at
intermediate z, merging back at higher values (see Figure
9A). For comparison, in Figure 9B we report the ρz(x) vs z
path, i.e., the one obtained by averaging over all the states
sampled at a given z values. The instantaneous density fields
ρ̃z(x) show that initially (1200 ≤ z ≤ 1500) the meniscus
descends flatly, then (1600 ≤ z ≤ 1800) it bends forming a
vapor bubble in one corner of the groove (symmetry breaking),
and finally (z ≥ 1900) the bubble is absorbed and the groove
filled. The transition state, occurring at z = 1800 at this ρ−T,
corresponds to configurations in which a bubble is formed in
one of the corners. This mechanism is significantly different
from the flat meniscus considered in continuum literature,21,40

that compares well with Figure 9 only at low z. Another
mechanism has also been proposed, namely, the “sag”
transition,41 where the triple line remains pinned at the edges
of the groove and the liquid/vapor interface bends symmetri-
cally toward the bottom. In the present simulations a similar
symmetric shape is obtained by averaging over the two specular
atomistic paths (Figure 9B) at z ≈ 1800.
A possible macroscopic explanation of the asymmetric

transition can be obtained considering the 2D problem
consisting of a square box partially filled with a liquid in
equilibrium with its vapor (see also Supporting Information).
This problem is similar to the one considered in this work if
one assumes that there is translational invariance along the z
direction (see Figure 2). If the liquid has a Young contact angle

Figure 8. Free energy barrier ΔF† of the CB2 → W and W → CB2
transition as a function of T for ρ = 0.725 and 0.732. ΔF† is reported
in kBT units. The dashed line in the two panels denotes the estimated
CB/W transition temperature.

Figure 9. CB2 to W transition paths at T = 0.81 and ρ = 0.732. The z
values range from 1200 to 1900. In panel (A) the smoothed
instantaneous field ρ̃z(x) is reported along the two specular paths
described in the text. Panel (B) provides the ensemble averaged field
ρz(x) at the corresponding z.
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Atomistic Mechanism

an extensive review of techniques for producing super-
hydrophobic surfaces and their possible technological applica-
tions). This has promoted applied research aimed at developing
decorated surfaces having a high contact angle, with an
associated low hysteresis, a large slip length, and that can
maintain the system in the CB state for the widest interval of
external conditions.
Fundamental research is more focused on the identification

of the factors controlling the stability of the CB vs W
states,20−23 a subject that has been investigated also by
continuum24 and atomistic25,26 simulations. Another objective
is to assess whether CB/W metastabilities can exist,17,27−29 i.e.,
whether a liquid can be kept in the CB state in conditions in
which the thermodynamic stable state is W (and vice versa).
This phenomenon can happen when the free energy surface
presents one absolute minimum and one or more local minima
separated from the former by large free energy barriers (i.e., as
compared to the thermal energy kBT). Metastability can also
have a technological importance, as in practice, it represents a
way of extending the range of stability of the CB state. On the
other hand, a negative consequence of metastability is that it
might prevent/slow down the “dewetting” process (transition
from W to CB). Thus, the identification of factors controlling
the height of these barriers is a subject of intense research.
Metastabilities and hysteresis make the investigation of the

CB/W phase transition by experiments or (atomistic)
simulations very difficult. A first step toward the complete
understanding of this process would be the determination of
the density (ρ)−temperature (T) equilibrium phase diagram.30

We aim at achieving this objective by computing the free
energy of the CB vs W phases at various ρ and T by atomistic
simulations. To this end, we will use the combined restrained
molecular dynamics - parallel tempering31 (RMD-PT)
approach, which is well-suited to dealing with systems bearing
known and unknown metastabilities. In addition to the phase
diagram, by computing the free energy along the path
connecting the CB and W states, we quantify the relevant
free energy barriers present in the system, clarifying whether
CB/W metastabilities can exist in the investigated system.
Finally, by analyzing the atomistic configurations along this
path we try to identify the mechanism of the transition.
Previous experiments and simulations have shown that the

CB/W phase diagram and transition rate depend on many
factors: the chemical nature of the liquid, the intrinsic
hydrophobicity of the material composing the surface,32

whether the liquid is deposited as a nano/micro droplet or in
bulk (see Figure 1), the characteristics of the corruga-
tions2,33−36 of the surface (shape,37 width, and height25,26 of
the corrugations), and many more. In the present work, we
focus on fundamental aspects of the CB/W transition, in
particular, on the ρ−T phase diagram of a groove of aspect ratio
close to unit. We postpone to future studies the investigation of
different aspect ratios and geometries on the thermodynamics
and kinetics of the transition.
We consider the case of a bulk Lennard-Jones liquid (LJ)

contained between two planar walls with a nanoscopic
decoration on one of them (see Figure 2). The surfaces, also
formed by LJ particles, interact with the liquid via a modified LJ
potential (see next section) that can be tuned to achieve the
desired hydrophobicity. The essential ingredients giving rise to
the hydrophobic effect are the liquid being close to phase
coexistence with its vapor and liquid−solid interactions being
significantly less attractive than liquid−liquid interactions.38 In

view of this, LJ liquids have often been employed in studying
the hydrophobic effect. For this reason, and for its simplicity,
we consider that it is suitable for a fundamental study.
Anticipating our results, we mention that the CB/W picture

is insufficient to represent our system as we identify two CB
states, characterized by different values of the curvature of the
meniscus. At intermediate T, the low curvature CB state is
more stable, while the high curvature CB state becomes more
stable at lower T. We show that, at a variance with what was
predicted by macroscopic theories,39 at the nanoscale the CB
state can also be stable in the case of moderate hydrophilic
surfaces (θY ≲ 90°, with θY being Young contact angle). We
provide evidence that metastable states separated by stable ones
by large free energy barriers (10 kBT or more) are supported by
the considered system over a wide range of temperatures. This
confirms that rare event techniques are necessary to study the
CB/W phase diagram/transition, as brute force simulations
may remain trapped in these metastable states. Concerning the
transition mechanism, we found that, at a variance with what
was proposed in literature,21,40,41 the CB/W transition follows
an asymmetric path, with the formation of a liquid finger on
one side of the groove and a vapor bubble on the opposite side.
This path can still be explained in terms of macroscopic
theories once unnecessary assumptions are lifted.

■ METHODS
In this section, we give an overview of the restrained molecular
dynamics - parallel tempering method (RMD-PT) method. The
readers already acquainted with these tools, or those uninterested in
the simulative details, may proceed directly to the Results and
Discussion section.

The free energy calculations are performed using the RMD-PT
method (see Orlandini et al.31 for a detailed description). In RMD-PT,
we combine a specialized version of the Maragliano and Vanden-
Eijnden TAMD42 method with parallel tempering (PT).43,44 Atoms
are evolved according to the following equation of motion

β̈ = −∇ +m U zr r( , ) thermo( )r
k (1)

where m is the physical mass, β = (kBT)
−1, and thermo(β) indicates

that the atoms are coupled to a thermostat at β. The potential Uk(r, z)
= V(r) + k/2[ε(r) − z]2 is the sum of the physical (V(r)) and
restraining potentials. ε(r) is a suitable collective variable (CV) and z
is its target value. Let us consider the following average:

Figure 2. Cartoon of the simulation box. Data are reported in
Lennard-Jones units. H denotes the distance between the walls, L the
computational box width, and h and l the height and the width of the
groove, respectively. The thickness of the simulation box is 11 and the
groove goes all through it along the z direction. The dashed rectangle,
of height cy and width cx, represents the cell used for the calculation of
the collective variable (see text). The simulation box is periodically
replicated along directions x, y, and z.
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our simulations, as we do not have trajectories going from CB2
to W. In fact, RMD-PT provides sets of configurations
extracted from the probability density function conditional to
ε(r) = z at fixed z (see Methods). These configurations
represent highly probable states at a fixed value of z. We note
that, for some z, there exist, at least from visual inspection, two
classes of specular atomistic configurations that break the
reflectional symmetry with respect to the central y−z plane. An
example is provided in Figure 9A where the plots refer to

smoothed instantaneous density fields ρ̃z(x).
52 A transition

between the two asymmetric states was never observed in a run
without PT. This is an indication that they represent free
energy minima of unknown collective variables (belonging to
the subspace orthogonal to ε(r)) that are separated by large
free energy barriers. Only using PT, these free energy barriers
can be overcome, and the symmetry of the ensemble averaged
ρz(x) is recovered (see Figures 5 and 6 for ρz(x) in equilibrium

states, and Figure 9B for the same field along the transition
path). This observation suggests that the atomistic mechanism
may follow unexpected asymmetric paths.
To make this argument independent of subjective observa-

tion, we apply cluster analysis59 to the instantaneous density
fields generated by RMD-PT in order to group similar
configurations into clusters (an extended description of this
approach is given in Appendix 1). A transition path is then
extracted as the sequence of clusters at successive values of z
that are the closest to each other. The concepts of “similarity”
and “proximity” need the introduction of the notion of distance
between two instantaneous density fields and between two
clusters. The reader interested in the algorithmic details is
referred to the Appendix 1; for the moment, we only mention
that we measured the distance between two configurations
indexed by k and k′, corresponding in general to two different z,
in terms of the L2-norm of the density field, Δρ̃zz′kk' = [∫ dx
(ρ̃z

k(x) − ρ̃z′
k'(x))2]1/2. Once clusters are formed at each z, a

representative of each cluster is selected, the medoid, that is the
element of minimal average dissimilarity with all the other
elements of the cluster. A ρ̃z(x) vs z trajectory is built starting
from one medoid at z = 1800, that corresponds to the
transition state (maximum of the free energy F(z)). For this
medoid, we identify the closest medoid at the next z value. This
procedure is iterated for any pair of contiguous z, moving
toward CB2 and toward W until the complete sequence of
clusters connecting the two states is constructed. The entire
process is repeated for another cluster at the transition state,
until the paths starting from all these clusters have been
identified.
We applied this analysis to the simulations at ρ = 0.732 and

T = 0.81. As a first remark, we mention that we were able to
identify two well-separated clusters for z ∈ [1600, 1800], while
at lower (z ∈ [1200, 1600)) and higher (z ∈ (1800, 2000)) z,
our data are better represented by a single cluster. This
confirms that the transition can proceed along two different
paths. These paths initially coincide and then split at
intermediate z, merging back at higher values (see Figure
9A). For comparison, in Figure 9B we report the ρz(x) vs z
path, i.e., the one obtained by averaging over all the states
sampled at a given z values. The instantaneous density fields
ρ̃z(x) show that initially (1200 ≤ z ≤ 1500) the meniscus
descends flatly, then (1600 ≤ z ≤ 1800) it bends forming a
vapor bubble in one corner of the groove (symmetry breaking),
and finally (z ≥ 1900) the bubble is absorbed and the groove
filled. The transition state, occurring at z = 1800 at this ρ−T,
corresponds to configurations in which a bubble is formed in
one of the corners. This mechanism is significantly different
from the flat meniscus considered in continuum literature,21,40

that compares well with Figure 9 only at low z. Another
mechanism has also been proposed, namely, the “sag”
transition,41 where the triple line remains pinned at the edges
of the groove and the liquid/vapor interface bends symmetri-
cally toward the bottom. In the present simulations a similar
symmetric shape is obtained by averaging over the two specular
atomistic paths (Figure 9B) at z ≈ 1800.
A possible macroscopic explanation of the asymmetric

transition can be obtained considering the 2D problem
consisting of a square box partially filled with a liquid in
equilibrium with its vapor (see also Supporting Information).
This problem is similar to the one considered in this work if
one assumes that there is translational invariance along the z
direction (see Figure 2). If the liquid has a Young contact angle

Figure 8. Free energy barrier ΔF† of the CB2 → W and W → CB2
transition as a function of T for ρ = 0.725 and 0.732. ΔF† is reported
in kBT units. The dashed line in the two panels denotes the estimated
CB/W transition temperature.

Figure 9. CB2 to W transition paths at T = 0.81 and ρ = 0.732. The z
values range from 1200 to 1900. In panel (A) the smoothed
instantaneous field ρ̃z(x) is reported along the two specular paths
described in the text. Panel (B) provides the ensemble averaged field
ρz(x) at the corresponding z.
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our simulations, as we do not have trajectories going from CB2
to W. In fact, RMD-PT provides sets of configurations
extracted from the probability density function conditional to
ε(r) = z at fixed z (see Methods). These configurations
represent highly probable states at a fixed value of z. We note
that, for some z, there exist, at least from visual inspection, two
classes of specular atomistic configurations that break the
reflectional symmetry with respect to the central y−z plane. An
example is provided in Figure 9A where the plots refer to

smoothed instantaneous density fields ρ̃z(x).
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between the two asymmetric states was never observed in a run
without PT. This is an indication that they represent free
energy minima of unknown collective variables (belonging to
the subspace orthogonal to ε(r)) that are separated by large
free energy barriers. Only using PT, these free energy barriers
can be overcome, and the symmetry of the ensemble averaged
ρz(x) is recovered (see Figures 5 and 6 for ρz(x) in equilibrium

states, and Figure 9B for the same field along the transition
path). This observation suggests that the atomistic mechanism
may follow unexpected asymmetric paths.
To make this argument independent of subjective observa-

tion, we apply cluster analysis59 to the instantaneous density
fields generated by RMD-PT in order to group similar
configurations into clusters (an extended description of this
approach is given in Appendix 1). A transition path is then
extracted as the sequence of clusters at successive values of z
that are the closest to each other. The concepts of “similarity”
and “proximity” need the introduction of the notion of distance
between two instantaneous density fields and between two
clusters. The reader interested in the algorithmic details is
referred to the Appendix 1; for the moment, we only mention
that we measured the distance between two configurations
indexed by k and k′, corresponding in general to two different z,
in terms of the L2-norm of the density field, Δρ̃zz′kk' = [∫ dx
(ρ̃z

k(x) − ρ̃z′
k'(x))2]1/2. Once clusters are formed at each z, a

representative of each cluster is selected, the medoid, that is the
element of minimal average dissimilarity with all the other
elements of the cluster. A ρ̃z(x) vs z trajectory is built starting
from one medoid at z = 1800, that corresponds to the
transition state (maximum of the free energy F(z)). For this
medoid, we identify the closest medoid at the next z value. This
procedure is iterated for any pair of contiguous z, moving
toward CB2 and toward W until the complete sequence of
clusters connecting the two states is constructed. The entire
process is repeated for another cluster at the transition state,
until the paths starting from all these clusters have been
identified.
We applied this analysis to the simulations at ρ = 0.732 and

T = 0.81. As a first remark, we mention that we were able to
identify two well-separated clusters for z ∈ [1600, 1800], while
at lower (z ∈ [1200, 1600)) and higher (z ∈ (1800, 2000)) z,
our data are better represented by a single cluster. This
confirms that the transition can proceed along two different
paths. These paths initially coincide and then split at
intermediate z, merging back at higher values (see Figure
9A). For comparison, in Figure 9B we report the ρz(x) vs z
path, i.e., the one obtained by averaging over all the states
sampled at a given z values. The instantaneous density fields
ρ̃z(x) show that initially (1200 ≤ z ≤ 1500) the meniscus
descends flatly, then (1600 ≤ z ≤ 1800) it bends forming a
vapor bubble in one corner of the groove (symmetry breaking),
and finally (z ≥ 1900) the bubble is absorbed and the groove
filled. The transition state, occurring at z = 1800 at this ρ−T,
corresponds to configurations in which a bubble is formed in
one of the corners. This mechanism is significantly different
from the flat meniscus considered in continuum literature,21,40

that compares well with Figure 9 only at low z. Another
mechanism has also been proposed, namely, the “sag”
transition,41 where the triple line remains pinned at the edges
of the groove and the liquid/vapor interface bends symmetri-
cally toward the bottom. In the present simulations a similar
symmetric shape is obtained by averaging over the two specular
atomistic paths (Figure 9B) at z ≈ 1800.
A possible macroscopic explanation of the asymmetric

transition can be obtained considering the 2D problem
consisting of a square box partially filled with a liquid in
equilibrium with its vapor (see also Supporting Information).
This problem is similar to the one considered in this work if
one assumes that there is translational invariance along the z
direction (see Figure 2). If the liquid has a Young contact angle

Figure 8. Free energy barrier ΔF† of the CB2 → W and W → CB2
transition as a function of T for ρ = 0.725 and 0.732. ΔF† is reported
in kBT units. The dashed line in the two panels denotes the estimated
CB/W transition temperature.

Figure 9. CB2 to W transition paths at T = 0.81 and ρ = 0.732. The z
values range from 1200 to 1900. In panel (A) the smoothed
instantaneous field ρ̃z(x) is reported along the two specular paths
described in the text. Panel (B) provides the ensemble averaged field
ρz(x) at the corresponding z.
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Continuum analysis

Since the total volume V ¼ Vl þ Vv is constant, we also
have !Vv ¼ #!Vl. Analogously, the variations in the areas
of the solid-vapor and solid-liquid interfaces are not inde-
pendent, !Asv ¼ #!Asl. It is then sufficient to express the
variation of one of the two areas: !Asl ¼

H
@!sl

!xtldl,

where !xtl denotes the displacement of the triple line along
the solid-liquid interface. From Fig. 1, !xn ¼ cos"!xtl,
where " is the contact angle. Putting together all the varia-
tions, we have

!I#;T;V ¼
Z
!lv

½ðpl # pvÞ þ $# J%lv'!xN dS

þ
I
@!sl

ð%sl # %sv þ %lv cos"Þ!xtl dl ¼ 0; (2)

that must hold for arbitrary !xN and !xtl. Thus, the con-
ditions for mechanical equilibrium of the liquid-vapor
interface in contact with the solid wall with prescribed
liquid volume consist of the system (i) the constraint
Vl ¼ Z, (ii) the Young equation cos" ¼ ð%sv # %slÞ=%lv (
cos"Y , and (iii) a modified version of Laplace equation
pl # pv þ $ ¼ J%lv. We remark that out of metastable
states Young and Laplace equations are independent; i.e.,
the curvature of the interface is not determined by the
contact angle. This fact has, as explained below, important
consequences on the wetting mechanism. The pressure
difference across the liquid-vapor interface pl # pv is a
function of the thermodynamic conditions#, V, and T. It is
seen that the constraining force $ acts as an additional
pressure term enforcing the constancy of the liquid volume.
By denoting IeqðZÞ the value of I#;V;T evaluated on solutions
of (i)–(iii), it is easily shown that $ ¼ @Ieq=@Z. Since
" ¼ I when Vl ¼ Z, one could construct by (thermody-
namic) integration the profile "eqðZÞ. Clearly, the equilib-
ria of the system at given thermodynamic conditions are
those where $ ¼ 0 and the classical Laplace equation is
recovered. Elsewhere, the modified equation (iii) allows us
to reconstruct the intermediate states between CB and W,
i.e., the transition mechanism [10].

As an illustration of the general theory, we apply
the conditions of (constrained) mechanical equilibrium

(i)–(iii) to a geometry corresponding to a surface present-
ing one rectangular groove as in Fig. 1, by referring to
different thermodynamic conditions at changing # for
given V, T, and system geometry. This is tantamount to
changing pl # pv [11]. Although for more complicated
geometries numerical schemes need to be developed start-
ing from the general theory, in this 2D geometry it is
possible to derive an analytical expression for the grand
potential as a function of the liquid volume filling the
groove Z [10]. We note that at given Z a plethora of
solutions to (i)–(iii) exists, each formed by a collection
of vapor cavities with liquid-vapor interfaces having con-
stant curvature—that is, arcs of a circle, in the plane–and
satisfying the Young equation at the wall. The relevant
one is that of minimal "eqðZÞ plotted in Fig. 2 [10].

"eqðZÞ is defined on three contiguous intervals:

½Zmin; Z
)' (continuous line), ½Z); Z))' (dashed line), and

½Z)); Zmax' (dotted-dashed line) each corresponding to a
family of !lv interfaces of different shape (see the right
panel of Fig. 1). When the groove is almost empty, the
contact line is pinned to its sharp edges. Here, !lv is the
family of arcs having curvature 1=R ¼ #2 cos&=l, as
sketched in Fig. 1 with a continuous line. For this particular
family, condition (ii) is substituted by Gibbs’ criterion [13],
which is the equivalent of Young equation on a sharp edge,
prescribing "Y þ'# ( * & * "Y , where ' is the angle
formed by the edge and & is defined as in Fig. 1."eq joins

smoothly from the first to the second domain at Vl ¼ Z),
where & ¼ "Y (dashed line in Fig. 1). Once the triple line
is depinned, the meniscus advances with constant curva-
ture along the groove, and "eq scales linearly with Z.

FIG. 1 (color online). Left: definition of the contact angle ", of
the free surface !lv, and of the free surface displacement. Right:
minimal solutions of equations (i)–(iii) in a 2D groove having
depth h and width l: pinned (solid line), symmetric (dashed)
asymmetric (dotted-dashed) solutions. The extremal values for
the pinned configuration are indicated by a dotted line.

FIG. 2 (color online). The dimensionless grand potential !
as a function of the normalized volume of liquid inside the
groove z ¼ Z=V, at different values of the (over)pressure: #~p ¼
ðpl # pvÞ=#pmax ¼ 0:05, 0.5, and 1.0. The contact angle is
taken to be "Y ’ 110+ and the aspect ratio of the groove ) ¼
l=h ¼ 1. The grand potential is shifted so that the W state always
corresponds to ! ¼ 0.
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Figure 1: Candidate solutions in the groove geometry having ↵ = 1.

expressing the constraint on the liquid volume; (ii) the Young’s law cos ✓k =
(�sv ��sl)/�lv ⌘ cos ✓Y , k = 1, . . . , Nc at each triple line, and (iii) the modified
Laplace equation pl � pv + � = J

k
�lv, k = 1, . . . , Nc for each liquid-vapor

interface.
From (iii) we find that the curvature J

k is constant and is the same for
all the interfaces, Jk = (pl � pv + �) /�lv ⌘ J . In the plane, each liquid-vapor
interface consists of an arc of circumference with radius R = 1/J prescribed
by the pressure di↵erence and the Lagrange multiplier. Moreover from (ii) the
contact angle with the solid is the same for all the liquid-vapor interfaces (note
that a vapor domain may not have contact with the solid).

It is important to classify the possible shapes a vapor domain satisfying
the above conditions may have. They are shown and numbered in Fig. 1 for a
groove having aspect ratio ↵ = l/h = 1 and hydrophobic nature (✓Y > ⇡/2).
Six di↵erent families are possible: 0) B0 is a circle which is completely immersed
in the liquid, with no contact with the solid. In principle an arbitrary integer
number N0 of such domains can exist. 1) B1 is a circular sector whose center lies
along the bisector of one of the two corners of the groove. At most two domains
of this kind are allowed, N1 = 0, 1, 2. 2) B2, whose liquid-vapor interface is an
arc of circumference with triple line pinned at the two (exterior) edges of the
groove, or adjoining the two side walls of the groove. Just one domain of this
kind is allowed, N2 = 0, 1. 3) B3 is a circular cap with base on one of the solid
walls. An arbitrary integer number N3 of them is possible. 4) B4 is a circular
sector whose center lies along the bisector of one of the two exterior edges of
the groove. At most two domains of this kind are allowed, N4 = 0, 1, 2. 5) B5 is
a vapor lens confined by two menisci adjoining the two side walls of the groove.
A single domain of this kind is possible N5 = 0, 1. The liquid-vapor interface
of domains belonging to families 1) - 5) must meet the solid wall with the same
contact angle given by Young’s law, see (ii).

To find the configuration of minimal grand potential for given liquid volume
let us define a configuration of the system, consisting of Nr vapor domains
of family r, r = 0, . . . , 5. If we fix the value of the Lagrange multiplier � the
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Since the total volume V ¼ Vl þ Vv is constant, we also
have !Vv ¼ #!Vl. Analogously, the variations in the areas
of the solid-vapor and solid-liquid interfaces are not inde-
pendent, !Asv ¼ #!Asl. It is then sufficient to express the
variation of one of the two areas: !Asl ¼

H
@!sl

!xtldl,

where !xtl denotes the displacement of the triple line along
the solid-liquid interface. From Fig. 1, !xn ¼ cos"!xtl,
where " is the contact angle. Putting together all the varia-
tions, we have

!I#;T;V ¼
Z
!lv

½ðpl # pvÞ þ $# J%lv'!xN dS

þ
I
@!sl

ð%sl # %sv þ %lv cos"Þ!xtl dl ¼ 0; (2)

that must hold for arbitrary !xN and !xtl. Thus, the con-
ditions for mechanical equilibrium of the liquid-vapor
interface in contact with the solid wall with prescribed
liquid volume consist of the system (i) the constraint
Vl ¼ Z, (ii) the Young equation cos" ¼ ð%sv # %slÞ=%lv (
cos"Y , and (iii) a modified version of Laplace equation
pl # pv þ $ ¼ J%lv. We remark that out of metastable
states Young and Laplace equations are independent; i.e.,
the curvature of the interface is not determined by the
contact angle. This fact has, as explained below, important
consequences on the wetting mechanism. The pressure
difference across the liquid-vapor interface pl # pv is a
function of the thermodynamic conditions#, V, and T. It is
seen that the constraining force $ acts as an additional
pressure term enforcing the constancy of the liquid volume.
By denoting IeqðZÞ the value of I#;V;T evaluated on solutions
of (i)–(iii), it is easily shown that $ ¼ @Ieq=@Z. Since
" ¼ I when Vl ¼ Z, one could construct by (thermody-
namic) integration the profile "eqðZÞ. Clearly, the equilib-
ria of the system at given thermodynamic conditions are
those where $ ¼ 0 and the classical Laplace equation is
recovered. Elsewhere, the modified equation (iii) allows us
to reconstruct the intermediate states between CB and W,
i.e., the transition mechanism [10].

As an illustration of the general theory, we apply
the conditions of (constrained) mechanical equilibrium

(i)–(iii) to a geometry corresponding to a surface present-
ing one rectangular groove as in Fig. 1, by referring to
different thermodynamic conditions at changing # for
given V, T, and system geometry. This is tantamount to
changing pl # pv [11]. Although for more complicated
geometries numerical schemes need to be developed start-
ing from the general theory, in this 2D geometry it is
possible to derive an analytical expression for the grand
potential as a function of the liquid volume filling the
groove Z [10]. We note that at given Z a plethora of
solutions to (i)–(iii) exists, each formed by a collection
of vapor cavities with liquid-vapor interfaces having con-
stant curvature—that is, arcs of a circle, in the plane–and
satisfying the Young equation at the wall. The relevant
one is that of minimal "eqðZÞ plotted in Fig. 2 [10].

"eqðZÞ is defined on three contiguous intervals:

½Zmin; Z
)' (continuous line), ½Z); Z))' (dashed line), and

½Z)); Zmax' (dotted-dashed line) each corresponding to a
family of !lv interfaces of different shape (see the right
panel of Fig. 1). When the groove is almost empty, the
contact line is pinned to its sharp edges. Here, !lv is the
family of arcs having curvature 1=R ¼ #2 cos&=l, as
sketched in Fig. 1 with a continuous line. For this particular
family, condition (ii) is substituted by Gibbs’ criterion [13],
which is the equivalent of Young equation on a sharp edge,
prescribing "Y þ'# ( * & * "Y , where ' is the angle
formed by the edge and & is defined as in Fig. 1."eq joins

smoothly from the first to the second domain at Vl ¼ Z),
where & ¼ "Y (dashed line in Fig. 1). Once the triple line
is depinned, the meniscus advances with constant curva-
ture along the groove, and "eq scales linearly with Z.

FIG. 1 (color online). Left: definition of the contact angle ", of
the free surface !lv, and of the free surface displacement. Right:
minimal solutions of equations (i)–(iii) in a 2D groove having
depth h and width l: pinned (solid line), symmetric (dashed)
asymmetric (dotted-dashed) solutions. The extremal values for
the pinned configuration are indicated by a dotted line.

FIG. 2 (color online). The dimensionless grand potential !
as a function of the normalized volume of liquid inside the
groove z ¼ Z=V, at different values of the (over)pressure: #~p ¼
ðpl # pvÞ=#pmax ¼ 0:05, 0.5, and 1.0. The contact angle is
taken to be "Y ’ 110+ and the aspect ratio of the groove ) ¼
l=h ¼ 1. The grand potential is shifted so that the W state always
corresponds to ! ¼ 0.
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are always present, but the first critical bubble is attained in the
asymmetric configuration, in one of the corners of the groove.
For even larger values of Nnu (Nnu = 3 in Figure 1a, right),
corresponding to very negative ΔP, the second maximum
disappears, and the remaining one corresponds to the critical
bubble formed in the corner. Similar results can be found for
different corrugations (see Figure 1b,c and the following
paragraphs).
Comparison with Molecular Dynamics. In order to

corroborate the continuum theory at the nanoscale where
nucleation starts, an independent atomistic technique
restrained molecular dynamics34,37 (RMD)is used to
reconstruct the free energy profile of nucleation on a system
equivalent to the 2D groove. The system consists of a Lennard-
Jones (LJ) liquid sitting on a “hydrophobic” LJ wall with a
square nanogroove. The essential features underpinning the
hydrophobic effect are captured by simple liquids such as LJ38

that, given their simplicity and relatively low computational
cost, represent the ideal benchmark for our theory. The single
atomistic collective variable m used to describe the emptying of
the groove is the atom count inside a box surrounding the
groove. m is compared with the continuum parameter
describing the advancement of nucleation by setting Vv =
(Nbox − m)/ρl, where Nbox is the number of atoms when the
box is full (Wenzel state) and ρl is the number density of the
bulk liquid. The parameters γlv, ΔP, and θY are measured by
separate MD simulations and fed into CREaM to compute the
free energy profile. The details of the atomistic methods are
discussed in the Supporting Information. The resulting profiles
in Figure 2 show a remarkable agreement between RMD and

CREaM. We stress that the model is not fitted on RMD data. A
qualitative difference, however, can be observed in correspond-
ence of the first maximum shown in the inset in Figure 2. The
location of the maximum, nonetheless, is very close to the
continuum theory and the height of the barrier is also
comparable. Probably the reason of the discrepancy is

associated with the critical radius, Rc, being of comparable
size with the thickness of the solid−liquid interface, di (see
Figure 2). In these conditions, the sharp interface model seems
to break down. The same system, simulated at different
pressures where the maximum is at much higher Rc, shows the
formation of the asymmetric meniscus and the same trend of
the free energy profile predicted by CREaM (see Supporting
Information).
The good agreement between continuum and atomistic

results suggests that CREaM is valid down to the nanoscale.
Consider also that the present continuum model is valid up to
approximately the capillary length lc = [γlv/(ρlg)]

1/2, when
gravity g starts to deform the liquid−vapor interface (for water
in standard conditions lc ∼ 2 mm). These observations suggest
that the present theory can be used quantitatively for a range of
lengths spanning as much as 6 orders of magnitude. In addition,
further extensions to include the effects of gravity, dissolved gas,
line tension, surface tension dependence on the radius of
curvature (via the Tolman length) are easy to implement in the
present framework and can further increase its accuracy and
range of validity.

Effect of Defect Geometry on Nucleation. We discuss
here how the geometry of defects alters the free energy barriers
connected with nucleation of vapor cavities, and thus the
nucleation rate, as compared to nucleation in the bulk and on
flat surfaces. For simple cases, some of the qualitative aspects of
nucleation enhancement by surface defects have been already
identified by Skripov.18 However, the treatment of general
defect geometries require a more detailed analysis as counter-
intuitive results can be obtained.39

The barriers for nucleation in the bulk liquid and on a flat
hydrophobic surface are known from classical nucleation
theory.16,18,40 In these cases, nucleation proceeds along simple
paths: in 3D, a sequence of spheres of increasing radii for bulk
nucleation and spherical caps meeting the surface with the
prescribed Young contact angle for nucleation on a flat surface.
As a result of these nucleation paths, free energy profiles
present a single maximum at the critical radius Rcr = 2γlv/ΔP =
2/Jcr, and thus nucleation is a one-step process leading from the
metastable liquid phase to the stable vapor phase. In the
presence of surface texturing, instead, nucleation may occur
along nontrivial paths, with a significant reduction of the free
energy barriers and breaking the process into multiple steps as
discussed below.
In Figure 3 and Figure 4, we report free energy barriers

encountered along the nucleation process on the three defects
of Figure 1 (2D square groove, wide and narrow conical
crevices, respectively) as computed from the respective free
energy profiles. To emphasize the effect of heterogeneity, the
barriers are reported as relative values with respect to
nucleation in the bulk, Δω͠∼† = ΔΩ†/ΔΩb

†, where ΔΩb
† =

C(d)πγlv
d/|ΔP|d−1 is the free energy barrier for nucleation in the

bulk, with d the dimensionality, C(2) = 1, and C(3) = 16/3. On
surface defects, nucleation can be a two-step process that
involves two free energy barriers to go from the pure liquid
phase (Vv = 0) to the pure vapor phase (Vv = Vtot) (see Figure
1, right). To clearly identify all the cases, the barriers are labeled
after their transition statethe configuration of the meniscus
corresponding to the maximum in the free energy profileas
shown in the lower panels of Figure 3 and Figure 4. In
particular, the notation Inside, or the subscript in, denotes a
transition state happening within the defect, while Outside, or
the subscript out, a transition state outside it. Summing up, the

Figure 2. Free energy profiles reconstructed via CREaM (solid line)
and restrained molecular dynamics34,37 (RMD, points). The free
energy is measured in kBT units. The parameters of RMD simulations
used in the continuum model are ΔP = −0.062, T = 0.8, θY = 110°, γlv
= 0.55, and L = 10. Lennard-Jones units are employed for all
quantities; see the Supporting Information for details. Standard error
propagation is used to quantify the uncertainty introduced in the
model by errors in the measurement of these parameters (dashed
lines). The inset in the main graph shows an enlarged view of the
region near the first maximum. On the right, atomistic configurations
extracted from the three points around this maximum, showing (Vv
increases from top to bottom) the local depletion of atoms with
thickness di, the critical bubble with radius Rc, and the symmetric
meniscus discussed in the text.
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are always present, but the first critical bubble is attained in the
asymmetric configuration, in one of the corners of the groove.
For even larger values of Nnu (Nnu = 3 in Figure 1a, right),
corresponding to very negative ΔP, the second maximum
disappears, and the remaining one corresponds to the critical
bubble formed in the corner. Similar results can be found for
different corrugations (see Figure 1b,c and the following
paragraphs).
Comparison with Molecular Dynamics. In order to

corroborate the continuum theory at the nanoscale where
nucleation starts, an independent atomistic technique
restrained molecular dynamics34,37 (RMD)is used to
reconstruct the free energy profile of nucleation on a system
equivalent to the 2D groove. The system consists of a Lennard-
Jones (LJ) liquid sitting on a “hydrophobic” LJ wall with a
square nanogroove. The essential features underpinning the
hydrophobic effect are captured by simple liquids such as LJ38

that, given their simplicity and relatively low computational
cost, represent the ideal benchmark for our theory. The single
atomistic collective variable m used to describe the emptying of
the groove is the atom count inside a box surrounding the
groove. m is compared with the continuum parameter
describing the advancement of nucleation by setting Vv =
(Nbox − m)/ρl, where Nbox is the number of atoms when the
box is full (Wenzel state) and ρl is the number density of the
bulk liquid. The parameters γlv, ΔP, and θY are measured by
separate MD simulations and fed into CREaM to compute the
free energy profile. The details of the atomistic methods are
discussed in the Supporting Information. The resulting profiles
in Figure 2 show a remarkable agreement between RMD and

CREaM. We stress that the model is not fitted on RMD data. A
qualitative difference, however, can be observed in correspond-
ence of the first maximum shown in the inset in Figure 2. The
location of the maximum, nonetheless, is very close to the
continuum theory and the height of the barrier is also
comparable. Probably the reason of the discrepancy is

associated with the critical radius, Rc, being of comparable
size with the thickness of the solid−liquid interface, di (see
Figure 2). In these conditions, the sharp interface model seems
to break down. The same system, simulated at different
pressures where the maximum is at much higher Rc, shows the
formation of the asymmetric meniscus and the same trend of
the free energy profile predicted by CREaM (see Supporting
Information).
The good agreement between continuum and atomistic

results suggests that CREaM is valid down to the nanoscale.
Consider also that the present continuum model is valid up to
approximately the capillary length lc = [γlv/(ρlg)]

1/2, when
gravity g starts to deform the liquid−vapor interface (for water
in standard conditions lc ∼ 2 mm). These observations suggest
that the present theory can be used quantitatively for a range of
lengths spanning as much as 6 orders of magnitude. In addition,
further extensions to include the effects of gravity, dissolved gas,
line tension, surface tension dependence on the radius of
curvature (via the Tolman length) are easy to implement in the
present framework and can further increase its accuracy and
range of validity.

Effect of Defect Geometry on Nucleation. We discuss
here how the geometry of defects alters the free energy barriers
connected with nucleation of vapor cavities, and thus the
nucleation rate, as compared to nucleation in the bulk and on
flat surfaces. For simple cases, some of the qualitative aspects of
nucleation enhancement by surface defects have been already
identified by Skripov.18 However, the treatment of general
defect geometries require a more detailed analysis as counter-
intuitive results can be obtained.39

The barriers for nucleation in the bulk liquid and on a flat
hydrophobic surface are known from classical nucleation
theory.16,18,40 In these cases, nucleation proceeds along simple
paths: in 3D, a sequence of spheres of increasing radii for bulk
nucleation and spherical caps meeting the surface with the
prescribed Young contact angle for nucleation on a flat surface.
As a result of these nucleation paths, free energy profiles
present a single maximum at the critical radius Rcr = 2γlv/ΔP =
2/Jcr, and thus nucleation is a one-step process leading from the
metastable liquid phase to the stable vapor phase. In the
presence of surface texturing, instead, nucleation may occur
along nontrivial paths, with a significant reduction of the free
energy barriers and breaking the process into multiple steps as
discussed below.
In Figure 3 and Figure 4, we report free energy barriers

encountered along the nucleation process on the three defects
of Figure 1 (2D square groove, wide and narrow conical
crevices, respectively) as computed from the respective free
energy profiles. To emphasize the effect of heterogeneity, the
barriers are reported as relative values with respect to
nucleation in the bulk, Δω͠∼† = ΔΩ†/ΔΩb

†, where ΔΩb
† =

C(d)πγlv
d/|ΔP|d−1 is the free energy barrier for nucleation in the

bulk, with d the dimensionality, C(2) = 1, and C(3) = 16/3. On
surface defects, nucleation can be a two-step process that
involves two free energy barriers to go from the pure liquid
phase (Vv = 0) to the pure vapor phase (Vv = Vtot) (see Figure
1, right). To clearly identify all the cases, the barriers are labeled
after their transition statethe configuration of the meniscus
corresponding to the maximum in the free energy profileas
shown in the lower panels of Figure 3 and Figure 4. In
particular, the notation Inside, or the subscript in, denotes a
transition state happening within the defect, while Outside, or
the subscript out, a transition state outside it. Summing up, the

Figure 2. Free energy profiles reconstructed via CREaM (solid line)
and restrained molecular dynamics34,37 (RMD, points). The free
energy is measured in kBT units. The parameters of RMD simulations
used in the continuum model are ΔP = −0.062, T = 0.8, θY = 110°, γlv
= 0.55, and L = 10. Lennard-Jones units are employed for all
quantities; see the Supporting Information for details. Standard error
propagation is used to quantify the uncertainty introduced in the
model by errors in the measurement of these parameters (dashed
lines). The inset in the main graph shows an enlarged view of the
region near the first maximum. On the right, atomistic configurations
extracted from the three points around this maximum, showing (Vv
increases from top to bottom) the local depletion of atoms with
thickness di, the critical bubble with radius Rc, and the symmetric
meniscus discussed in the text.
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are always present, but the first critical bubble is attained in the
asymmetric configuration, in one of the corners of the groove.
For even larger values of Nnu (Nnu = 3 in Figure 1a, right),
corresponding to very negative ΔP, the second maximum
disappears, and the remaining one corresponds to the critical
bubble formed in the corner. Similar results can be found for
different corrugations (see Figure 1b,c and the following
paragraphs).
Comparison with Molecular Dynamics. In order to

corroborate the continuum theory at the nanoscale where
nucleation starts, an independent atomistic technique
restrained molecular dynamics34,37 (RMD)is used to
reconstruct the free energy profile of nucleation on a system
equivalent to the 2D groove. The system consists of a Lennard-
Jones (LJ) liquid sitting on a “hydrophobic” LJ wall with a
square nanogroove. The essential features underpinning the
hydrophobic effect are captured by simple liquids such as LJ38

that, given their simplicity and relatively low computational
cost, represent the ideal benchmark for our theory. The single
atomistic collective variable m used to describe the emptying of
the groove is the atom count inside a box surrounding the
groove. m is compared with the continuum parameter
describing the advancement of nucleation by setting Vv =
(Nbox − m)/ρl, where Nbox is the number of atoms when the
box is full (Wenzel state) and ρl is the number density of the
bulk liquid. The parameters γlv, ΔP, and θY are measured by
separate MD simulations and fed into CREaM to compute the
free energy profile. The details of the atomistic methods are
discussed in the Supporting Information. The resulting profiles
in Figure 2 show a remarkable agreement between RMD and

CREaM. We stress that the model is not fitted on RMD data. A
qualitative difference, however, can be observed in correspond-
ence of the first maximum shown in the inset in Figure 2. The
location of the maximum, nonetheless, is very close to the
continuum theory and the height of the barrier is also
comparable. Probably the reason of the discrepancy is

associated with the critical radius, Rc, being of comparable
size with the thickness of the solid−liquid interface, di (see
Figure 2). In these conditions, the sharp interface model seems
to break down. The same system, simulated at different
pressures where the maximum is at much higher Rc, shows the
formation of the asymmetric meniscus and the same trend of
the free energy profile predicted by CREaM (see Supporting
Information).
The good agreement between continuum and atomistic

results suggests that CREaM is valid down to the nanoscale.
Consider also that the present continuum model is valid up to
approximately the capillary length lc = [γlv/(ρlg)]

1/2, when
gravity g starts to deform the liquid−vapor interface (for water
in standard conditions lc ∼ 2 mm). These observations suggest
that the present theory can be used quantitatively for a range of
lengths spanning as much as 6 orders of magnitude. In addition,
further extensions to include the effects of gravity, dissolved gas,
line tension, surface tension dependence on the radius of
curvature (via the Tolman length) are easy to implement in the
present framework and can further increase its accuracy and
range of validity.

Effect of Defect Geometry on Nucleation. We discuss
here how the geometry of defects alters the free energy barriers
connected with nucleation of vapor cavities, and thus the
nucleation rate, as compared to nucleation in the bulk and on
flat surfaces. For simple cases, some of the qualitative aspects of
nucleation enhancement by surface defects have been already
identified by Skripov.18 However, the treatment of general
defect geometries require a more detailed analysis as counter-
intuitive results can be obtained.39

The barriers for nucleation in the bulk liquid and on a flat
hydrophobic surface are known from classical nucleation
theory.16,18,40 In these cases, nucleation proceeds along simple
paths: in 3D, a sequence of spheres of increasing radii for bulk
nucleation and spherical caps meeting the surface with the
prescribed Young contact angle for nucleation on a flat surface.
As a result of these nucleation paths, free energy profiles
present a single maximum at the critical radius Rcr = 2γlv/ΔP =
2/Jcr, and thus nucleation is a one-step process leading from the
metastable liquid phase to the stable vapor phase. In the
presence of surface texturing, instead, nucleation may occur
along nontrivial paths, with a significant reduction of the free
energy barriers and breaking the process into multiple steps as
discussed below.
In Figure 3 and Figure 4, we report free energy barriers

encountered along the nucleation process on the three defects
of Figure 1 (2D square groove, wide and narrow conical
crevices, respectively) as computed from the respective free
energy profiles. To emphasize the effect of heterogeneity, the
barriers are reported as relative values with respect to
nucleation in the bulk, Δω͠∼† = ΔΩ†/ΔΩb

†, where ΔΩb
† =

C(d)πγlv
d/|ΔP|d−1 is the free energy barrier for nucleation in the

bulk, with d the dimensionality, C(2) = 1, and C(3) = 16/3. On
surface defects, nucleation can be a two-step process that
involves two free energy barriers to go from the pure liquid
phase (Vv = 0) to the pure vapor phase (Vv = Vtot) (see Figure
1, right). To clearly identify all the cases, the barriers are labeled
after their transition statethe configuration of the meniscus
corresponding to the maximum in the free energy profileas
shown in the lower panels of Figure 3 and Figure 4. In
particular, the notation Inside, or the subscript in, denotes a
transition state happening within the defect, while Outside, or
the subscript out, a transition state outside it. Summing up, the

Figure 2. Free energy profiles reconstructed via CREaM (solid line)
and restrained molecular dynamics34,37 (RMD, points). The free
energy is measured in kBT units. The parameters of RMD simulations
used in the continuum model are ΔP = −0.062, T = 0.8, θY = 110°, γlv
= 0.55, and L = 10. Lennard-Jones units are employed for all
quantities; see the Supporting Information for details. Standard error
propagation is used to quantify the uncertainty introduced in the
model by errors in the measurement of these parameters (dashed
lines). The inset in the main graph shows an enlarged view of the
region near the first maximum. On the right, atomistic configurations
extracted from the three points around this maximum, showing (Vv
increases from top to bottom) the local depletion of atoms with
thickness di, the critical bubble with radius Rc, and the symmetric
meniscus discussed in the text.
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FIG. 4. Illustration of the paths obtained via the string (a) and CREaM (b).
In this sketch, one of the axis represents the volume of liquid in the cavity Vl

while the other represents the complementary degrees of freedom. The dashed
line in panel (a) is the hyperplane (1�⌧(z(↵l, t)) ⌦⌧(z(↵l, t)))v, where v
is a generic vector. This is the plane on which M̂rF is zero. The dashed
line in panel (b), instead, represents the hypersurface V =Vl, i.e., one of the
infinite hypersurfaces on which the minimum of the free energy is sought in
the CREaM method. The string path follows the valley of the reactants and
then moves smoothly to the valley of the products. When the reactants and
products valleys become parallel, the CREaM path moves abruptly from one
to the other, following the minimum of the free-energy corresponding to a
given level of progress of the reaction. This is shown in panel (b): the yellow
line denotes the two branches of the CREaM path, and the gray double arrow
highlights its discontinuity.

than the string method as it does not require any exchange
of data among images and can be run on non-connected
heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the more physical results
obtained via the atomistic string and the sharp-interface
calculations (string and CREaM) introduced in Secs. II–IV.
We focus on the transition path for the Cassie-Wenzel
transition and on the related free-energy profiles. The length
scales covered range from few particle diameters ⇠11� of the
smallest atomistic system simulated to macroscopic scales,
which are described in terms of sharp-interface models.

A. The atomistic string

1. The mechanism of the Cassie-Wenzel transition

We computed the transition path of the Cassie-Wenzel
transition on two geometries, a square and a rectangular groove
(Fig. 2). A total of 32 images were used to discretize the string.
The pressure of the NPT simulations was chosen to be close
to the coexistence between the Cassie and the Wenzel states.
The strings were initialized from configurations extracted from
RMD simulations with a single collective variable, the number
of particles in the groove; the free-energy profiles obtained
via RMD are reported for comparison in Fig. 3(b) and in
Ref. 26. The RMD simulations are analogous, apart for the
ensemble (here NPT), to those presented and discussed in
Ref. 18. We ensure that all initial images in the string have the
same symmetry, that is, all menisci lie in the same corner, the
left one.

We first performed a committor analysis for validating
the collective variables. The value of the committor function

for configurations belonging to the transition state is 0.5.20

However, within the approximations of MFEP (i.e., the use
of “not perfect” collective variables, and the approximation
of the transition state with the hyperplane orthogonal to the
MFEP at the maximum of the free energy profile), we expect
that the committor is distributed around 0.5. In Fig. 5, we
report the committor function computed at the maximum
of the free energy and at the previous image, closer to the
Cassie minimum. We found that the committor function at
the transition state is distributed around 1, and the one at the
image before is distributed around 0. This is, most likely, an
e↵ect of the discretization of the MFEP: the image closest
to the transition state is already in the product’s domain,
while the one before is in the reactant’s domain. This result
is consistent with the observation that the mean force at the
estimated transition state is toward the product, while the one
at the previous point is toward the reactant (see Fig. 8). Thus,
even if the committor is not peaked at 0.5, this test seems
to indicate that the coarse grained density field is a good
collective variable to describe the Cassie-Wenzel transition.
We remark that one of the objectives of this article is to
validate some of the assumptions of the continuum models for
describing wetting. Thus, we chose the most general collective
variable, the coarse grained density field, consistently with the
typical variables used in these models; we leave for future work
the calculation of a more resolved string allowing for a more
accurate computation of the committor.

The atomistic string calculations give access to the metric
matrix along the string. This piece of information is an
important one in building coarse-grained descriptions as it
links the coarse-graining variables to the underlying atomistic
description of the system. In the absence of a better input,
macroscopic models usually assume that the metric matrix
coincides with the identity matrix, Mi j = �i j, where �i j is the
Kronecker delta. This was also our choice in computing the
interface string. A representative metric matrix computed via
the atomistic string is reported in Fig. 6, showing that the most
significant elements are those on the main diagonal. However,
there are non-zero elements related to the surrounding coarse-
graining cells which give the metric matrix its multi-diagonal
character. As shown, e.g., by Müller and Sun,27 this structure
of the metric matrix can be related to the continuity of
the density—or local mass conservation; in particular, it

FIG. 5. Committor function distribution for the image corresponding to the
maximum of the free energy profile, 17, and the image before, 16.

Finally, in the third domain, corresponding to large Z, an
asymmetric !lv is energetically favored, as first pointed
out in Ref. [6]. This solution is illustrated by the dotted-
dashed curve in Fig. 1 and is valid for practical hydro-
phobic surfaces, where 90! < !Y < 135! [10].

Figure 2 provides the dimensionless grand potential! ¼
"eq=ðV#pmaxÞ as a function of the dimensionless filling
level z ¼ Z=V for a hydrophobic surface with !Y ¼ 110!,
at various dimensionless pressures #~p% ðpl&pvÞ=#pmax.
We take as reference pressure #pmax ¼ &2"lv cos!Y=l,
corresponding to the maximum pressure difference across
the interface !lv before depinning takes place, see bottom
panel of Fig. 2 where the region of indifferent equilibrium at
different z (dashed line) is apparent. We remark that (meta-
stable) equilibria correspond to local minima of the !ðzÞ
profile, where the stable state is the absolute one. From
Fig. 2 it is apparent that the stability of the CB state depends
explicitly on the pressure difference between the liquid and
vapor phases. A (meta)stable CB state is possible as long as
pl & pv < #pmax, see the top two panels of Fig. 2. #pmax

coincides with the estimate of the transition pressure
obtained in a different way by Patankar [14], for which a
more precise interpretation can now be formulated: #pmax

is the value beyond which no (metastable) CB state is
possible—the spinodal line for the phase transition. In addi-
tion, the theory provides the pressure difference#~pc, where
the CB and W states coexist, i.e., where the two minima in
the grand potential have the same value. #~pc depends on
surface chemistry (!Y) and corrugation geometry (#).

A key result of this theory is an estimate of the grand
potential barriers separating the CB andW states, as shown in
Fig. 3(a). At a variance with previous literature [15] that
assumes ad hoc transition mechanisms, here the mechanism
is an outcome of the theory and allows to determine the
position and height of the barriers [10]. Such barriers #!y

are crucial for quantifying the metastabilities of the system

and the transition rates between the two states. The typical
time a metastable CB state can survive on a superhydropho-
bic surface may be estimated through the Eyring equation
[16], $ / exp½#!y

CB!W#pmax=ð%kBTÞ(, where % is a num-
ber density. Since the barriers are, to a good approximation,
linear in#~p, $ scales exponentially with&ðpl & pvÞ, mean-
ing that long-living CB states are possible close to bulk
saturation, but rapidly disappear at large pl & pv. An
increase in #~p, indeed, favors the W state, as shown by the
growth of #!y

W!CB in Fig. 3(a). The coexistence pressure
#~pc is plotted in Fig. 3(b), where aspect ratio of the groove#
and contact angle !Y are allowed to vary. As already known
in literature, see, among others, Ref. [1], the CB state is
stabilized by deep grooves (low #) or highly hydrophobic
substrates (large !Y).
The present approach can be thought as a continuum

equivalent to the RMD technique used to simulate the
wetting of a nanogroove in Ref. [6]. Consistently, the
continuum method allows us to reconstruct the most prob-
able configuration conditional to the given z, that is, the
physically relevant one. For a direct comparison, we per-
form RMD [17] simulations at constant pressure [18] of a
system having # ¼ 1 and !Y ’ 110!. The system is com-
posed of around 50 k Lennard-Jones (LJ) liquid atoms,

FIG. 3 (color online). (a) Grand potential barriers #!y as a
function of the dimensionless pressure (same # and !Y as in
Fig. 2). #!y is computed as the grand potential difference
between a local minimum and the transition state (maximum):
in continuous line, the barrier from the W to the transition state;
in dotted-dashed, from CB. The dashed line represents the
estimated coexistence pressure #~pc for the CB and W states,
which is attained for #~p ’ 0:14. (b) Coexistence pressure as a
function of the aspect ratio #, for different contact angles (log-
scale on abscissas). The triangle identifies #~pc of panel A.

FIG. 4 (color online). Grand potential and free energy profiles
as a function of the filling level (d)–(f), both from the present
continuum theory and constant pressure atomistic simulations.
Pressure increases from panel (d) to (f); the pressure differences
used to fit the continuum theory are#~p ¼ 0:01, 0.17, and 3.0, for
panels (d)–(f), respectively. In panels (a)–(c) sample atomistic
configurations extracted from simulation in (e) are reported,
corresponding to CB, transition, and W states, respectively.
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FIG. 1. Top: Mechanism of the Cassie-Wenzel transition on rectangular
grooves as computed with the continuum rare events method;9 the path is
parametrized in terms of the volume of liquid Vl filling the cavity normalized
with the total volume of the cavity Vtot. Bottom: Free-energy profile (in
arbitrary units) for the Cassie-Wenzel transition as computed from the path
above at two-phase coexistence.

superhydrophobic state.10,16,17 We focus here on the latter
case by studying a model system that is simple enough to
allow comparison of di↵erent approaches and yet shows a
surprisingly rich phenomenology (see Fig. 1).

In previous works,9,18,19 we characterized the free-energy
barriers of the Cassie-Wenzel transition occurring in isolated
hydrophobic roughness elements under di↵erent conditions of
pressure and temperature. The systems considered spanned
from few nanometers (explored via molecular dynamics
simulations18) to macroscopic dimensions, for which the Con-
tinuum Rare Events method, or CREaM, was developed.9,19

Over this broad range of systems, at coexistence—when the
Cassie and Wenzel state have the same free-energy—free-
energy barriers are much larger than kBT accounting for strong
metastabilities.

For all previous approaches, the wetting path was char-
acterized following the changes of the (coarse-grained) fluid
density field, ⇢(x). This, in turn, was considered a parametric
function of the filling of the surface corrugation (or liquid
volume inside it), ⇢(x; Vl). The resulting path of the transition
is the sequence {⇢(x; Vl, i)}i=1,N of density fields minimizing
the free-energy at a given Vl, i. Under suitable conditions,
explained in Sec. IV, this sequence represents a realistic
description of the wetting path. However, when this descrip-
tion was applied in combination with a macroscopic, sharp-
interface macroscopic model,9 we obtained a discontinuous
wetting path (see Fig. 1). The discontinuity corresponds to
an instantaneous switching from a symmetric liquid/vapor
meniscus to an asymmetric bubble in one of the corners of
the corrugation (morphological transition). This discontinuity
occurs at the “transition state” and corresponds to a non-
di↵erentiable point in the free-energy profile. This sharp point
may have two distinct origins:

• an algorithmic one, related to the parametrization of the
wetting path with the volume of liquid in the groove
used in CREaM;

• a modeling one, i.e., it could arise as a genuine fea-
ture of the sharp-interface model, which was used in
combination with CREaM.9,19

The question about the sharp point of the free-energy
profile well illustrates the main goal of this paper, that is,
unraveling the limitations of continuum models of wetting
from those of the algorithms, and, more generally, laying
on solid statistical grounds the discussion about the wetting
mechanism on rough surfaces. In order to achieve this goal,
we compute the minimum free-energy path (MFEP) using the
string method in collective variables.20 We employ atomistic
simulations with the aim of making minimal assumptions on
the liquid/vapor interface and the interactions with the walls.
The collective variable that characterizes the microscopic
configuration implemented is the coarse-grained density field.
We compare the paths and free-energy profiles in the atomistic
description and in the continuum, sharp-interface models. The
continuum path is obtained via the string method and via
CREaM. Qualitatively, the atomistic and continuum wetting
mechanisms are consistent. However, the free-energy profile
obtained with the atomistic string surprisingly shows a better
agreement with continuum CREaM. This seems due to an
“error cancellation,” with CREaM compensating the intrinsic
limitations of the sharp-interface model with respect to the
atomistic case.

The second goal of this work is to elucidate the e↵ect
of the shape of the surface corrugation and its size on the
mechanism of the Cassie-Wenzel transition and on the related
free-energy barrier. Anticipating our results, the concept of
transition path itself may break down if the corrugations are
su�ciently small.

The methods presented and compared in this article can
also be relevant for other problems related to engineered
or natural rough surfaces. This is, for example, the case
of cavitation, and the related problem of the stability of
nanobubbles (see, for example, Ref. 19). Advanced continuum
and atomistic techniques can improve the understanding of
these phenomena beyond what can be achieved using “brute
force” approaches, which can either only access (some of)
the metastable states (continuum simulations) or require the
application of unrealistic super/under critical conditions to
observe the relevant slow processes on the ps-µs timescale
(atomistic).32

The paper is organized as follows: in Secs. II, III,
and IV, the methods employed here, the atomistic string,
the interface string, and the CREaM, are introduced and
compared. This first part contains the main methodological
findings. In Sec. V, the atomistic and continuum results
are presented and discussed, concentrating on the physics
of the Cassie-Wenzel transition. Section VI summarizes all
conclusions.

II. MOLECULAR DYNAMICS SIMULATIONS

The mechanism of the Cassie-Wenzel transition was in-
vestigated with the string method in collective variables ap-
plied to molecular dynamics simulations.20 Molecular dy-
namics simulations were performed with the LAMMPS en-
gine21 equipped for the string calculations with the PLUMED22

plugin as explained below. The isothermal/isobaric ensemble
(NPT) was used for all simulations by using the algorithm of
Martyna et al.

23,24 The standard Lennard Jones (LJ) potential
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⌃lv

parametrized according to its arc-length ↵ =
R z↵
z0

|dz|/
R z1
z0

|dz| where z0 and z1 are the

extrema of the string. Firstly, Eq. (4) is rewritten as (using a matrix notation):

h
g(↵)rz⌦(↵)

i

?
= 0 (9)

where ? indicates the component perpendicular to the MFEP. Hence is possible to introduce

a pseudo-dynamics:

dz(↵, t)

dt
= �

h
g(↵)rz⌦(↵)

i

?
(10)

where t is an artificial time, such that at stationarity Eq. (10) converges to the MFEP.

Equation (10) can be solved using the improved version of the string method proposed by

E et al.[8] consisting of the two steps. In the first step, the path z(↵) is discretized in a set

of Q points, called images, ↵r with r = 1, . . . , Q (here Q = 64). Each image is then evolved

according to the pseudo-dynamics:

dz(↵r, t)

dt
= �g(↵r)rz⌦(↵r) (11)

in which g(↵r) and rz⌦(↵r) are computed using Eq. (7) and Eq. (8), respectively. Evolving

the images according to Eq. (11) not only changes the string, but also alters its parametriza-

tion, moving the images towards the free-energy minima. Thus a second reparametrization

step is needed in order to enforce that the parametrization remains constant during the

evolution. Here the equal arc-length parametrization is used. It is possible to show that

Eq. 11 and a re-parametrization step are equivalent to Eq. 10, thus allowing to compute the

MFEP [8].

The initial images z(↵r, 0) for the string method are chosen by extracting Q di↵erent

images from a spontaneous transition between Cassie and Wenzel states. This spontaneous

event is triggered by imposing a liquid pressure Pl close to the spinodal one, at which the

transition happens on a time scale comparable with those achievable with MD simulations.

At each step, the free-energy gradient and the metric matrix are computed via Eqs. (7)

and (8) and the images are evolved according to Eq. (11); the images are subsequently

interpolated with a polygonal and redistributed with equal arc-length; the free energy along

the string is computed by integrating the thermodynamic force in Eq. (8). The results

of this procedure are shown in Fig.S1a for several evolutions of the string. It is evident

5
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��lv (1 + cos(✓))

Z
dx f(h(x)/�)

Switching function 
of characteristic length d

where !l and !r are Lagrange multipliers determined by the
constraints

!"l − "s! = !"r − "s! = h . "30#

"29# is a discretized version of "27# because

!V""l# = H""s#""l − "s# + O"h2# "31#

and similarly for !V""r#: here we used !V""s# and !"l−"s!
=h.

In practice, "29# can be solved by a two-step procedure.
At each time step, "r and "l is first evolved by the potential
force to give intermediate values,

"l
! = "l

n − #t ! V""l
n# , "32#

and similarly for "r
!; then the constraints in "30# are enforced

by projecting "l
! and "r

! to the sphere S"s,h
with center "s and

radius h,

"l
n+1 = "s + h

"l
! − "s

!"l
! − "s!

"33#

and similarly for "r
!. The steady-state solution of the proce-

dure above is used in "28# to calculate the tangent vector $̂s.
The parameter h in "28# should be chosen as small as

possible without impeding the accuracy with round-off er-
rors: if the digital precision is TOLmin, one should choose
h=TOLmin

1/2 , in which case the error due to finite difference in
"28# remains O"h2#=O"TOLmin#.

Notice that the time step #t in "32# can be chosen inde-
pendently of h without impeding on the accuracy because
"31# implies that !V""l#=O"h# and !V""r#=O"h#. As a re-
sult !"l

!−"l
n!=O"h# and !"r

!−"l
n!=O"h# and the two steps in

the procedure above do not interfere with the accuracy re-
gardless of what #t is. Since the convergence of the solution
of "29# is exponential in time, the number of steps nstep re-
quired to achieved a given accuracy TOL on $s scales as in
"23#.

Note that the above procedure brings "r and "l to the
minima of the potential energy V on the sphere S"s,h

by
steepest descent dynamics. More efficient constrained opti-
mization methods can be used as well to improve the con-
vergence rate and save computational cost.15

C. Illustrative example

In this example, we calculate the MEP, one of the saddle
point, and the associated unstable direction for the Mueller
potential.13

In the calculation, we first identify an approximation of
the MEP using the improved string method with N=10 im-
ages. Cubic splines were used in the reparametrization and
the forward Euler method with #t=4.5%10−4 was used in
the integration. After 70 time steps when d defined in "18# is
less than 0.1, we stop the string calculation, and identify the
image of maximum energy along the string, "s

0, and the cor-
responding $̂s

0. Then we switch to the climbing image algo-
rithm described in Sec. V A to improve "s

0, using again #t
=4.5%10−4 in "22#. The numerical result is shown in the

upper panel of Fig. 2. The figure shows the initial string
"dashed line# and the calculated MEP "filled circles#. The
background shows the contour lines of the Mueller potential.
There is an intermediate metastable state along the MEP, and
accordingly there are two saddle points. The empty circle on
the MEP indicates the location of the saddle point "s with
higher energy, obtained by the climbing image technique.
After convergence, the norm of the potential force at "s,
!!V""s#!, is smaller than 10−12. It takes 188 time steps to
reach this accuracy. The convergence history for the calcula-
tion of the saddle point is shown in the lower panel of Fig. 2.
The error decays exponentially with the iteration number or
time step n.

We then proceeded to calculate the unstable direction at
"s using the algorithm described in Sec. V B. We compared
the accuracy of the numerical results for different choices of
h.2,3,5,15 The numerical result is shown in the upper panel of
Fig. 3. Here the error is calculated by

FIG. 2. Upper panel: Initial string and calculated MEP using the string
method with ten images "the images are shown as filled circles; the lines are
the curves interpolated across these images; the vertical line is the initial
string and the other one is the calculated MEP#. The empty circle indicates
the saddle point identified by combining the string method with the climbing
image technique. The norm of the residual potential force at "s is smaller
than 10−12, !!V""s#!&10−12. The background shows the contour lines of the
Mueller potential. Lower panel: The norm of the force on the climbing
image !!V""s#! vs the number n of iterations or time steps. The convergence
is exponential in time.
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FIG. 4. Illustration of the paths obtained via the string (a) and CREaM (b).
In this sketch, one of the axis represents the volume of liquid in the cavity Vl

while the other represents the complementary degrees of freedom. The dashed
line in panel (a) is the hyperplane (1�⌧(z(↵l, t)) ⌦⌧(z(↵l, t)))v, where v
is a generic vector. This is the plane on which M̂rF is zero. The dashed
line in panel (b), instead, represents the hypersurface V =Vl, i.e., one of the
infinite hypersurfaces on which the minimum of the free energy is sought in
the CREaM method. The string path follows the valley of the reactants and
then moves smoothly to the valley of the products. When the reactants and
products valleys become parallel, the CREaM path moves abruptly from one
to the other, following the minimum of the free-energy corresponding to a
given level of progress of the reaction. This is shown in panel (b): the yellow
line denotes the two branches of the CREaM path, and the gray double arrow
highlights its discontinuity.

than the string method as it does not require any exchange
of data among images and can be run on non-connected
heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the more physical results
obtained via the atomistic string and the sharp-interface
calculations (string and CREaM) introduced in Secs. II–IV.
We focus on the transition path for the Cassie-Wenzel
transition and on the related free-energy profiles. The length
scales covered range from few particle diameters ⇠11� of the
smallest atomistic system simulated to macroscopic scales,
which are described in terms of sharp-interface models.

A. The atomistic string

1. The mechanism of the Cassie-Wenzel transition

We computed the transition path of the Cassie-Wenzel
transition on two geometries, a square and a rectangular groove
(Fig. 2). A total of 32 images were used to discretize the string.
The pressure of the NPT simulations was chosen to be close
to the coexistence between the Cassie and the Wenzel states.
The strings were initialized from configurations extracted from
RMD simulations with a single collective variable, the number
of particles in the groove; the free-energy profiles obtained
via RMD are reported for comparison in Fig. 3(b) and in
Ref. 26. The RMD simulations are analogous, apart for the
ensemble (here NPT), to those presented and discussed in
Ref. 18. We ensure that all initial images in the string have the
same symmetry, that is, all menisci lie in the same corner, the
left one.

We first performed a committor analysis for validating
the collective variables. The value of the committor function

for configurations belonging to the transition state is 0.5.20

However, within the approximations of MFEP (i.e., the use
of “not perfect” collective variables, and the approximation
of the transition state with the hyperplane orthogonal to the
MFEP at the maximum of the free energy profile), we expect
that the committor is distributed around 0.5. In Fig. 5, we
report the committor function computed at the maximum
of the free energy and at the previous image, closer to the
Cassie minimum. We found that the committor function at
the transition state is distributed around 1, and the one at the
image before is distributed around 0. This is, most likely, an
e↵ect of the discretization of the MFEP: the image closest
to the transition state is already in the product’s domain,
while the one before is in the reactant’s domain. This result
is consistent with the observation that the mean force at the
estimated transition state is toward the product, while the one
at the previous point is toward the reactant (see Fig. 8). Thus,
even if the committor is not peaked at 0.5, this test seems
to indicate that the coarse grained density field is a good
collective variable to describe the Cassie-Wenzel transition.
We remark that one of the objectives of this article is to
validate some of the assumptions of the continuum models for
describing wetting. Thus, we chose the most general collective
variable, the coarse grained density field, consistently with the
typical variables used in these models; we leave for future work
the calculation of a more resolved string allowing for a more
accurate computation of the committor.

The atomistic string calculations give access to the metric
matrix along the string. This piece of information is an
important one in building coarse-grained descriptions as it
links the coarse-graining variables to the underlying atomistic
description of the system. In the absence of a better input,
macroscopic models usually assume that the metric matrix
coincides with the identity matrix, Mi j = �i j, where �i j is the
Kronecker delta. This was also our choice in computing the
interface string. A representative metric matrix computed via
the atomistic string is reported in Fig. 6, showing that the most
significant elements are those on the main diagonal. However,
there are non-zero elements related to the surrounding coarse-
graining cells which give the metric matrix its multi-diagonal
character. As shown, e.g., by Müller and Sun,27 this structure
of the metric matrix can be related to the continuity of
the density—or local mass conservation; in particular, it

FIG. 5. Committor function distribution for the image corresponding to the
maximum of the free energy profile, 17, and the image before, 16.
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FIG. 4. Illustration of the paths obtained via the string (a) and CREaM (b).
In this sketch, one of the axis represents the volume of liquid in the cavity Vl

while the other represents the complementary degrees of freedom. The dashed
line in panel (a) is the hyperplane (1�⌧(z(↵l, t)) ⌦⌧(z(↵l, t)))v, where v
is a generic vector. This is the plane on which M̂rF is zero. The dashed
line in panel (b), instead, represents the hypersurface V =Vl, i.e., one of the
infinite hypersurfaces on which the minimum of the free energy is sought in
the CREaM method. The string path follows the valley of the reactants and
then moves smoothly to the valley of the products. When the reactants and
products valleys become parallel, the CREaM path moves abruptly from one
to the other, following the minimum of the free-energy corresponding to a
given level of progress of the reaction. This is shown in panel (b): the yellow
line denotes the two branches of the CREaM path, and the gray double arrow
highlights its discontinuity.

than the string method as it does not require any exchange
of data among images and can be run on non-connected
heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the more physical results
obtained via the atomistic string and the sharp-interface
calculations (string and CREaM) introduced in Secs. II–IV.
We focus on the transition path for the Cassie-Wenzel
transition and on the related free-energy profiles. The length
scales covered range from few particle diameters ⇠11� of the
smallest atomistic system simulated to macroscopic scales,
which are described in terms of sharp-interface models.

A. The atomistic string

1. The mechanism of the Cassie-Wenzel transition

We computed the transition path of the Cassie-Wenzel
transition on two geometries, a square and a rectangular groove
(Fig. 2). A total of 32 images were used to discretize the string.
The pressure of the NPT simulations was chosen to be close
to the coexistence between the Cassie and the Wenzel states.
The strings were initialized from configurations extracted from
RMD simulations with a single collective variable, the number
of particles in the groove; the free-energy profiles obtained
via RMD are reported for comparison in Fig. 3(b) and in
Ref. 26. The RMD simulations are analogous, apart for the
ensemble (here NPT), to those presented and discussed in
Ref. 18. We ensure that all initial images in the string have the
same symmetry, that is, all menisci lie in the same corner, the
left one.

We first performed a committor analysis for validating
the collective variables. The value of the committor function

for configurations belonging to the transition state is 0.5.20

However, within the approximations of MFEP (i.e., the use
of “not perfect” collective variables, and the approximation
of the transition state with the hyperplane orthogonal to the
MFEP at the maximum of the free energy profile), we expect
that the committor is distributed around 0.5. In Fig. 5, we
report the committor function computed at the maximum
of the free energy and at the previous image, closer to the
Cassie minimum. We found that the committor function at
the transition state is distributed around 1, and the one at the
image before is distributed around 0. This is, most likely, an
e↵ect of the discretization of the MFEP: the image closest
to the transition state is already in the product’s domain,
while the one before is in the reactant’s domain. This result
is consistent with the observation that the mean force at the
estimated transition state is toward the product, while the one
at the previous point is toward the reactant (see Fig. 8). Thus,
even if the committor is not peaked at 0.5, this test seems
to indicate that the coarse grained density field is a good
collective variable to describe the Cassie-Wenzel transition.
We remark that one of the objectives of this article is to
validate some of the assumptions of the continuum models for
describing wetting. Thus, we chose the most general collective
variable, the coarse grained density field, consistently with the
typical variables used in these models; we leave for future work
the calculation of a more resolved string allowing for a more
accurate computation of the committor.

The atomistic string calculations give access to the metric
matrix along the string. This piece of information is an
important one in building coarse-grained descriptions as it
links the coarse-graining variables to the underlying atomistic
description of the system. In the absence of a better input,
macroscopic models usually assume that the metric matrix
coincides with the identity matrix, Mi j = �i j, where �i j is the
Kronecker delta. This was also our choice in computing the
interface string. A representative metric matrix computed via
the atomistic string is reported in Fig. 6, showing that the most
significant elements are those on the main diagonal. However,
there are non-zero elements related to the surrounding coarse-
graining cells which give the metric matrix its multi-diagonal
character. As shown, e.g., by Müller and Sun,27 this structure
of the metric matrix can be related to the continuity of
the density—or local mass conservation; in particular, it
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FIG. 4. Illustration of the paths obtained via the string (a) and CREaM (b).
In this sketch, one of the axis represents the volume of liquid in the cavity Vl

while the other represents the complementary degrees of freedom. The dashed
line in panel (a) is the hyperplane (1�⌧(z(↵l, t)) ⌦⌧(z(↵l, t)))v, where v
is a generic vector. This is the plane on which M̂rF is zero. The dashed
line in panel (b), instead, represents the hypersurface V =Vl, i.e., one of the
infinite hypersurfaces on which the minimum of the free energy is sought in
the CREaM method. The string path follows the valley of the reactants and
then moves smoothly to the valley of the products. When the reactants and
products valleys become parallel, the CREaM path moves abruptly from one
to the other, following the minimum of the free-energy corresponding to a
given level of progress of the reaction. This is shown in panel (b): the yellow
line denotes the two branches of the CREaM path, and the gray double arrow
highlights its discontinuity.

than the string method as it does not require any exchange
of data among images and can be run on non-connected
heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the more physical results
obtained via the atomistic string and the sharp-interface
calculations (string and CREaM) introduced in Secs. II–IV.
We focus on the transition path for the Cassie-Wenzel
transition and on the related free-energy profiles. The length
scales covered range from few particle diameters ⇠11� of the
smallest atomistic system simulated to macroscopic scales,
which are described in terms of sharp-interface models.

A. The atomistic string

1. The mechanism of the Cassie-Wenzel transition

We computed the transition path of the Cassie-Wenzel
transition on two geometries, a square and a rectangular groove
(Fig. 2). A total of 32 images were used to discretize the string.
The pressure of the NPT simulations was chosen to be close
to the coexistence between the Cassie and the Wenzel states.
The strings were initialized from configurations extracted from
RMD simulations with a single collective variable, the number
of particles in the groove; the free-energy profiles obtained
via RMD are reported for comparison in Fig. 3(b) and in
Ref. 26. The RMD simulations are analogous, apart for the
ensemble (here NPT), to those presented and discussed in
Ref. 18. We ensure that all initial images in the string have the
same symmetry, that is, all menisci lie in the same corner, the
left one.

We first performed a committor analysis for validating
the collective variables. The value of the committor function

for configurations belonging to the transition state is 0.5.20

However, within the approximations of MFEP (i.e., the use
of “not perfect” collective variables, and the approximation
of the transition state with the hyperplane orthogonal to the
MFEP at the maximum of the free energy profile), we expect
that the committor is distributed around 0.5. In Fig. 5, we
report the committor function computed at the maximum
of the free energy and at the previous image, closer to the
Cassie minimum. We found that the committor function at
the transition state is distributed around 1, and the one at the
image before is distributed around 0. This is, most likely, an
e↵ect of the discretization of the MFEP: the image closest
to the transition state is already in the product’s domain,
while the one before is in the reactant’s domain. This result
is consistent with the observation that the mean force at the
estimated transition state is toward the product, while the one
at the previous point is toward the reactant (see Fig. 8). Thus,
even if the committor is not peaked at 0.5, this test seems
to indicate that the coarse grained density field is a good
collective variable to describe the Cassie-Wenzel transition.
We remark that one of the objectives of this article is to
validate some of the assumptions of the continuum models for
describing wetting. Thus, we chose the most general collective
variable, the coarse grained density field, consistently with the
typical variables used in these models; we leave for future work
the calculation of a more resolved string allowing for a more
accurate computation of the committor.

The atomistic string calculations give access to the metric
matrix along the string. This piece of information is an
important one in building coarse-grained descriptions as it
links the coarse-graining variables to the underlying atomistic
description of the system. In the absence of a better input,
macroscopic models usually assume that the metric matrix
coincides with the identity matrix, Mi j = �i j, where �i j is the
Kronecker delta. This was also our choice in computing the
interface string. A representative metric matrix computed via
the atomistic string is reported in Fig. 6, showing that the most
significant elements are those on the main diagonal. However,
there are non-zero elements related to the surrounding coarse-
graining cells which give the metric matrix its multi-diagonal
character. As shown, e.g., by Müller and Sun,27 this structure
of the metric matrix can be related to the continuity of
the density—or local mass conservation; in particular, it
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FIG. 4. Illustration of the paths obtained via the string (a) and CREaM (b).
In this sketch, one of the axis represents the volume of liquid in the cavity Vl

while the other represents the complementary degrees of freedom. The dashed
line in panel (a) is the hyperplane (1�⌧(z(↵l, t)) ⌦⌧(z(↵l, t)))v, where v
is a generic vector. This is the plane on which M̂rF is zero. The dashed
line in panel (b), instead, represents the hypersurface V =Vl, i.e., one of the
infinite hypersurfaces on which the minimum of the free energy is sought in
the CREaM method. The string path follows the valley of the reactants and
then moves smoothly to the valley of the products. When the reactants and
products valleys become parallel, the CREaM path moves abruptly from one
to the other, following the minimum of the free-energy corresponding to a
given level of progress of the reaction. This is shown in panel (b): the yellow
line denotes the two branches of the CREaM path, and the gray double arrow
highlights its discontinuity.

than the string method as it does not require any exchange
of data among images and can be run on non-connected
heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the more physical results
obtained via the atomistic string and the sharp-interface
calculations (string and CREaM) introduced in Secs. II–IV.
We focus on the transition path for the Cassie-Wenzel
transition and on the related free-energy profiles. The length
scales covered range from few particle diameters ⇠11� of the
smallest atomistic system simulated to macroscopic scales,
which are described in terms of sharp-interface models.

A. The atomistic string

1. The mechanism of the Cassie-Wenzel transition

We computed the transition path of the Cassie-Wenzel
transition on two geometries, a square and a rectangular groove
(Fig. 2). A total of 32 images were used to discretize the string.
The pressure of the NPT simulations was chosen to be close
to the coexistence between the Cassie and the Wenzel states.
The strings were initialized from configurations extracted from
RMD simulations with a single collective variable, the number
of particles in the groove; the free-energy profiles obtained
via RMD are reported for comparison in Fig. 3(b) and in
Ref. 26. The RMD simulations are analogous, apart for the
ensemble (here NPT), to those presented and discussed in
Ref. 18. We ensure that all initial images in the string have the
same symmetry, that is, all menisci lie in the same corner, the
left one.

We first performed a committor analysis for validating
the collective variables. The value of the committor function

for configurations belonging to the transition state is 0.5.20

However, within the approximations of MFEP (i.e., the use
of “not perfect” collective variables, and the approximation
of the transition state with the hyperplane orthogonal to the
MFEP at the maximum of the free energy profile), we expect
that the committor is distributed around 0.5. In Fig. 5, we
report the committor function computed at the maximum
of the free energy and at the previous image, closer to the
Cassie minimum. We found that the committor function at
the transition state is distributed around 1, and the one at the
image before is distributed around 0. This is, most likely, an
e↵ect of the discretization of the MFEP: the image closest
to the transition state is already in the product’s domain,
while the one before is in the reactant’s domain. This result
is consistent with the observation that the mean force at the
estimated transition state is toward the product, while the one
at the previous point is toward the reactant (see Fig. 8). Thus,
even if the committor is not peaked at 0.5, this test seems
to indicate that the coarse grained density field is a good
collective variable to describe the Cassie-Wenzel transition.
We remark that one of the objectives of this article is to
validate some of the assumptions of the continuum models for
describing wetting. Thus, we chose the most general collective
variable, the coarse grained density field, consistently with the
typical variables used in these models; we leave for future work
the calculation of a more resolved string allowing for a more
accurate computation of the committor.

The atomistic string calculations give access to the metric
matrix along the string. This piece of information is an
important one in building coarse-grained descriptions as it
links the coarse-graining variables to the underlying atomistic
description of the system. In the absence of a better input,
macroscopic models usually assume that the metric matrix
coincides with the identity matrix, Mi j = �i j, where �i j is the
Kronecker delta. This was also our choice in computing the
interface string. A representative metric matrix computed via
the atomistic string is reported in Fig. 6, showing that the most
significant elements are those on the main diagonal. However,
there are non-zero elements related to the surrounding coarse-
graining cells which give the metric matrix its multi-diagonal
character. As shown, e.g., by Müller and Sun,27 this structure
of the metric matrix can be related to the continuity of
the density—or local mass conservation; in particular, it

FIG. 5. Committor function distribution for the image corresponding to the
maximum of the free energy profile, 17, and the image before, 16.
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0.5 is the surface of states having 50% of probability to reach
first the products and 50% to reach first the reactants. This
surface is the rigorous definition of the transition state.

Consider an isocommittor surface, S which intersects the
MFEP at a point z(↵). Let us denote by n↵ the normal to S at
z(↵) and by ⌧(z↵) the tangent to the MFEP at the same point.
In Ref. 20, it is shown that

⌧(z↵) k M̂n↵. (22)

If we compare Eq. (22) with Eq. (3), we conclude that the
MFEP is the path connecting constrained minima of the free-
energy on the isocommittor surfaces S↵ foliating the space.

Similar to the string method, CREaM aims at identifying
a wetting path. However, at variance with the string method,
in CREaM this path is not parametrized with its arc-length but
with an observable of relevance for the problem at hand. This
very general framework can be applied to di↵erent models,
ranging from the micro- to the macroscale; for the macroscopic
scale, in the sharp-interface model which was originally used
to describe the Cassie-Wenzel transition, the wetting path is
parametrized with the volume of liquid in the groove, Vl.
Like in the case of the string method, in CREaM the free-
energy is minimized subject to the constraint that the variable
parametrizing the path is constant. In other words, the path
obtained by CREaM connects the constrained minima of the
free-energy on the constant volume surfaces S

V
↵ .

Comparing this formulation of the CREaM path with
the formulation of the string path in terms of constrained
minimization of the free-energy in the isocommittor surface,
we conclude that the two paths coincide if and only if S

V
↵ ⌘ S↵,

at least locally to the path.
In Fig. 3(b), we compare the free-energy profiles obtained

via CREaM and via the interface string, as computed along
the respective paths.26 We note that the profiles coincide for
most of the path, departing from each other only in a relative-
ly small region around the transition state. This is not
surprising because, at variance with the string, CREaM does
not impose the continuity of the path. Thus, in the case of
the Cassie-Wenzel transition, which takes place through a
morphological transition (see Ref. 9 and Sec. V), CREaM
does not map the continuous path along which the symmetric
meniscus configuration goes into the bubble-in-a-corner one
(see Fig. 4).

In Fig. 3(b), we also report the free-energy profile
obtained from two distinct atomistic approaches: the string
method explained in Sec. II B and the RMD introduced in a
previous work.18 The latter method is the atomistic counterpart
of CREaM9 and indeed the two free-energy profiles nicely
overlap. The atomistic string appears to better agree with
CREaM and RMD than with the interface string. In the sharp
interface limit �/h ! 0, the interface string yields a larger
free-energy barrier; also, the position of the transition state is
shifted towards higher filling levels as compared with the other
cases. The reason for this discrepancy is discussed in Sec. V;
here, we note that it may arise because of “errors cancellation”
in CREaM: the underestimation of the barrier due to neglecting
the details of the path close to the transition state compensates
for an overestimation intrinsic to the sharp-interface models.

Summarizing, the paths obtained from CREaM and the
string method are not identical but give the same qualitative
description of the process. While the string method gives a
detailed and continuous description of the most likely wetting
path all along the process, CREaM represents the segment
around the transition state as a sharp morphological transition
(Fig. 4). Indeed, CREaM and the string can be used as
complementary tools. CREaM allows to e�ciently compute
all the possible “reactive” channels. The string method can
then be used to further refine the CREaM paths. When the
system is relatively simple, like the case of wetting of a square
groove,9 it is possible to obtain the analytical solution of the
CREaM equations. Thanks to CREaM, it was possible to
derive an extended version of the Laplace equation, which
relates the driving force of the Cassie-Wenzel transition to
the meniscus curvature and to surface tension. This relation,
that was introduced for the first time in Ref. 9, is valid along
most of the wetting path, apart in the region connecting the
symmetric meniscus and bubble-in-a-corner morphologies.
Finally, CREaM has a high parallel e�ciency, even higher

FIG. 3. (a) Transition path computed via the interface string. (b) Rescaled
excess free-energy �⌦ along the interface string for �p̃ = 0, ⇠ = 1, �/h
= 0.0001, ✓Y = 110�, and N = 140 (green solid line). �⌦ for the inter-
face string is compared to the profiles computed via the atomistic string,
CREaM, and RMD simulations at the same thermodynamic conditions.
The profiles are shifted along the ordinates so that the Cassie states co-
incide at �⌦= 0. This allows for a better comparison among the free-
energy profiles, because the atomistic ones are obtained by forward in-
tegration of the mean force, resulting in larger errors at high filling lev-
els.18 On the abscissae, we report the parametric variable Vl/Vtot of the
CREaM method; for the interface string, Vl/Vtot is computed from the path
in the top panel, while for RMD and the atomistic string, Vl/Vtot= (Z
�Zcassie)/(Zwenzel�Zcassie), where Z is the total number of particles inside the
coarse-graining cell(s). (c) Behavior of the interface string around the saddle
point for di↵erent �/h; the free-energy profile obtained via the atomistic string
is reported for comparison. The saddle point corresponds to the configuration
where the liquid-vapor interface touches the bottom of the capillary, between
images 3 and 4 of the path in panel (a). (Multimedia view) [URL: http://dx.
doi.org/10.1063/1.4913839.1]

104701-8 Giacomello et al. J. Chem. Phys. 142, 104701 (2015)

FIG. 6. Metric matrix computed from Eq. (4) at the Wenzel state (image 31).
The matrix elements are normalized with the maximum value. On the x and
y axes, the cell numbers are reported. Values lower than one are observed on
the main diagonal when the density is lower than the bulk liquid one (at the
wall corners, see Fig. 7).

suggests that in di↵use interface continuum models, one
should use Cahn-Hilliard28 dynamics in connection with the
string rather than just assuming Mi j = �i j. The interface
string discussed here already implements the local mass
conservation, since only local movements of the liquid-vapor
interface are allowed within this framework. We defer to a
future study a more detailed investigation of the e↵ect of the
microscopic information encoded in the metric matrix on the
transition path.

The square groove measures around 11� ⇥ 11�. The
thermodynamic conditions of the simulations were T = 0.8
and P = 0.001 in LJ units, where P is the global pressure
observable computed for all atoms. Around 30 steps of
evolution of the string (for each of which the mean forces
were computed via RMD simulations, see Sec. II B) were
required to ensure convergence.

In Fig. 7(a) (Multimedia view), we show the transition
path for the square groove, i.e., the sequence of average
density fields forming the string at convergence. The meniscus
is initially flat close to the Cassie state. As the transition
proceeds, the meniscus descends into the groove with constant
curvature (images 7-21) until close to the bottom a liquid finger
is formed on the right side of the groove (images 22-24).
Eventually, the liquid wets one corner of the groove forming a
circular bubble that gradually shrinks (images 25-29) until it is
completely absorbed and the Wenzel state is reached (images
30-32).

The initial and final parts of the path (the initial
pinning, the symmetric meniscus, and the final bubble in
the corner) are in fair agreement with restrained molecular
dynamics simulations and the macroscopic CREaM results9

(see Fig. 3(b)). However, close to the transition state the
liquid-vapor interface forms a finger thus departing from
the constant curvature menisci prescribed by CREaM. This
discrepancy is explained by the interface string path which,
close to the transition state, exhibits a point of the meniscus
with high curvature (similar to the atomistic finger) that
eventually touches the bottom wall creating a small and a
large bubble (see Fig. 3(a), Multimedia view). The fine details
of the process, however, are not easy to compare, because the
di↵use nature of the atomistic interface tends to smear out
sharp points and small vapor domains; to this must be added
that computational constraints limit the number of images and
coarse-graining cells in the atomistic string.

The rectangular groove measures around 22� ⇥ 11�
and is therefore twice as wide as the square one. The
thermodynamic conditions of the NPT simulations were
T = 0.8 and P = 0 for this case. More than 30 steps of string
evolution were required for convergence.

The MFEP for the rectangular groove is shown in Fig. 7(b)
(Multimedia view). It is seen that before the Cassie minimum,
the meniscus curvature is allowed to vary while the triple
line is pinned at the top corners of the groove (images 1-5),
as is expected from the macroscopic Gibbs’ criterion.29 This
is an evidence that pinning happens also at the nanoscale,
even though in a particle description of the system, the
continuum concept of “geometrical singularity” (the corners
at the top of the groove, in the present case) has no meaning.
However, the string resolution (number of images) does not
allow us to quantify the range of contact angles for which
pinning occurs. The intrusion into the groove happens when
a su�ciently large meniscus curvature is reached, around
image 5. The meniscus bends towards one corner at images
14-17, earlier in the progress of the transition than in the
case of the square groove. This observation can be made
more quantitative by considering a parametrization of the
string in terms of the relative filling level of the groove,
↵Z ⌘ (Z � Zcassie)/(Zwenzel � Zcassie) (the same parametrization
used in Figs. 3(b) and 3(c)). We assigned the transition state
to the image which corresponds to the maximum of the free
energy, ↵TS ⌘ ↵max. For the square groove, this yields ↵Z,TS

= 0.68 while for the rectangular groove, ↵Z,TS = 0.59. The
relative position of the transition state physically corresponds
to the contact of the meniscus with the bottom wall, which

FIG. 7. MFEP computed with the atomistic string method for grooves having square (a) and rectangular aspect ratios (b). The actual width of the rectangular
groove is twice as large as the square one. Blue corresponds to high density, close to the bulk liquid one, while red low density (vapor). The image number is
indicated in the corresponding density field. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4913839.2] [URL: http://dx.doi.org/10.1063/1.4913839.3]
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FIG. 2. Cells used in the definition of the coarse-grained density collective
variable for the square (a) and the rectangular grooves (b). The axes and
relevant dimensions used in the text are also defined.

was used for the fluid-fluid interactions; fluid-solid interactions
were also of LJ type, with the attractive term that was tuned
through the factor c,

�LJ(ri j) = "
266664
 
�

ri j

!12

� c

 
�

ri j

!6377775 , (1)

where ri j is the distance between the atoms i and j, while
" and � set the scales of energy and length, respectively. In
order to obtain a hydrophobic solid, we set c = 0.6, which
corresponds to a contact angle ✓Y ' 110�. Periodic boundary
conditions are applied in the three directions. The lower wall
featured a rectangular groove (or trench) extending through
the y direction. Two kinds of grooves were considered, the
first having a width of 11� and square aspect ratio, and the
second having a width of 22� and a rectangular aspect ratio,
see Fig. 2.

A. Coarse grained density field

The collective variable used to describe the intrusion of
liquid inside of the groove was the coarse-grained density field.
This quantity was computed from the atomic positions as the
number of atoms inside the cells sketched in Fig. 2. We used
a mollified version of the characteristic function of the cells
based on the Fermi functions in order to prevent impulsive
forces on atoms crossing the cell boundaries (see Sec. II B).
The cells occupied the whole y dimension of the groove thus
being e↵ectively two-dimensional: for the square groove, a
total of N = 66 cells were used, while for the rectangular
groove, N = 120, as sketched in Fig. 2. In both cases, the
dimensions of the coarse-graining cells were 2 � ⇥ 2 � in the
x and z directions.

The Landau free-energy of the system as a function of
the realization, z, of the (vector) collective variable ✓(r) is
defined as

F(z) = �kBT ln P(z)

= �kBT ln *,
⌅

dr m(r)
NY

i=1

�(✓i(r) � zi) +- , (2)

where kB is the Boltzmann constant, T is the system
temperature, P(z) is the probability to find the system at state
z, and r is the 3Np dimensional vector of particles positions,
with Np the number of particles in the system. The probability
P(z) is expressed in the second equality of Eq. (2) as the
integral over the 3Np-dimensional configurational space of
the probability density m(r) of the relevant ensemble (the

Boltzmann factor) times Dirac deltas centered at value zi of
the N components of the collective variable. The collective
variable is assumed to depend only on the 3Np configurational
degrees of freedom.

B. Implementation of the string method

For the general derivation of the string method in
collective variables, we refer the reader to the original work of
Maragliano et al.

20 Briefly, this method allows one to identify
the MFEP, that is, the most probable path. The MFEP is the
continuous curve in the space of collective variables—in this
case the coarse-grained density field—satisfying the equation

dzi(↵)
d↵

����
����

NX

j=1

Mi j(z(↵))
@F(z(↵))

@z j
, (3)

where ↵ is a parametrization of the MFEP, k means “parallel
to,” the indices i and j run over the N collective variables
(which in vector notation are indicated as z), F(z) is the free-
energy defined in Eq. (2), and Mi j(z) is a metric matrix due
to projection of the phase space onto the collective variable
space and defined as20

Mi j(z) = hrr✓i · rr✓ jiz

⌘
⇤

d r rr✓i · rr✓ j e��U (r)QN
k=1 �(✓k(r) � zk)⇤

d r e��U (r)QN
k=1 �(✓k(r) � zk)

, (4)

where ��1 = kBT and U(r) is the potential energy of the
system. Loosely speaking, when the metric matrix coincides
with the identity matrix, Eq. (3) prescribes that the MFEP joins
two minima of the free-energy landscape passing through the
bottom of the valleys and the saddle point connecting them
(the transition state).

The string method is an algorithm that allows one to
identify the MFEP. The string itself is a discretization of the
path connecting two metastable states, that is, two minima
in the free-energy landscape. The string can be parametrized
according to its relative arc-length, ↵ =

⇤ z↵
za |dz|/

⇤ zb
za |dz|, with

a and b the beginning and the end of the string, respectively.
The discrete points along the string are called images and are
labeled with their position on the string ↵l, where l is the
index of the images. We use here the “improved” version of
the string method by E et al.

25 which consists of three steps:

1. Calculation of the free-energy gradient and of the metric
matrix at the current position of the images, see RHS of
Eq. (3).

2. Evolution of one timestep of the images according to the
(time-discretized) pseudo-dynamics

@zi(↵l, t)
@t

= �
NX

j=1

Mi j(z(↵l, t))
@F(z(↵l, t))

@z j
. (5)

3. Parametrization of the string to enforce equal arc-length
parametrization among contiguous images.

For su�ciently large t, the algorithm guarantees that z(↵l, t)
converges to the MFEP defined in Eq. (3) (see Refs. 20 and
25).
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FIG. 4. Illustration of the paths obtained via the string (a) and CREaM (b).
In this sketch, one of the axis represents the volume of liquid in the cavity Vl

while the other represents the complementary degrees of freedom. The dashed
line in panel (a) is the hyperplane (1�⌧(z(↵l, t)) ⌦⌧(z(↵l, t)))v, where v
is a generic vector. This is the plane on which M̂rF is zero. The dashed
line in panel (b), instead, represents the hypersurface V =Vl, i.e., one of the
infinite hypersurfaces on which the minimum of the free energy is sought in
the CREaM method. The string path follows the valley of the reactants and
then moves smoothly to the valley of the products. When the reactants and
products valleys become parallel, the CREaM path moves abruptly from one
to the other, following the minimum of the free-energy corresponding to a
given level of progress of the reaction. This is shown in panel (b): the yellow
line denotes the two branches of the CREaM path, and the gray double arrow
highlights its discontinuity.

than the string method as it does not require any exchange
of data among images and can be run on non-connected
heterogeneous computers.

V. RESULTS AND DISCUSSION

In this section, we present the more physical results
obtained via the atomistic string and the sharp-interface
calculations (string and CREaM) introduced in Secs. II–IV.
We focus on the transition path for the Cassie-Wenzel
transition and on the related free-energy profiles. The length
scales covered range from few particle diameters ⇠11� of the
smallest atomistic system simulated to macroscopic scales,
which are described in terms of sharp-interface models.

A. The atomistic string

1. The mechanism of the Cassie-Wenzel transition

We computed the transition path of the Cassie-Wenzel
transition on two geometries, a square and a rectangular groove
(Fig. 2). A total of 32 images were used to discretize the string.
The pressure of the NPT simulations was chosen to be close
to the coexistence between the Cassie and the Wenzel states.
The strings were initialized from configurations extracted from
RMD simulations with a single collective variable, the number
of particles in the groove; the free-energy profiles obtained
via RMD are reported for comparison in Fig. 3(b) and in
Ref. 26. The RMD simulations are analogous, apart for the
ensemble (here NPT), to those presented and discussed in
Ref. 18. We ensure that all initial images in the string have the
same symmetry, that is, all menisci lie in the same corner, the
left one.

We first performed a committor analysis for validating
the collective variables. The value of the committor function

for configurations belonging to the transition state is 0.5.20

However, within the approximations of MFEP (i.e., the use
of “not perfect” collective variables, and the approximation
of the transition state with the hyperplane orthogonal to the
MFEP at the maximum of the free energy profile), we expect
that the committor is distributed around 0.5. In Fig. 5, we
report the committor function computed at the maximum
of the free energy and at the previous image, closer to the
Cassie minimum. We found that the committor function at
the transition state is distributed around 1, and the one at the
image before is distributed around 0. This is, most likely, an
e↵ect of the discretization of the MFEP: the image closest
to the transition state is already in the product’s domain,
while the one before is in the reactant’s domain. This result
is consistent with the observation that the mean force at the
estimated transition state is toward the product, while the one
at the previous point is toward the reactant (see Fig. 8). Thus,
even if the committor is not peaked at 0.5, this test seems
to indicate that the coarse grained density field is a good
collective variable to describe the Cassie-Wenzel transition.
We remark that one of the objectives of this article is to
validate some of the assumptions of the continuum models for
describing wetting. Thus, we chose the most general collective
variable, the coarse grained density field, consistently with the
typical variables used in these models; we leave for future work
the calculation of a more resolved string allowing for a more
accurate computation of the committor.

The atomistic string calculations give access to the metric
matrix along the string. This piece of information is an
important one in building coarse-grained descriptions as it
links the coarse-graining variables to the underlying atomistic
description of the system. In the absence of a better input,
macroscopic models usually assume that the metric matrix
coincides with the identity matrix, Mi j = �i j, where �i j is the
Kronecker delta. This was also our choice in computing the
interface string. A representative metric matrix computed via
the atomistic string is reported in Fig. 6, showing that the most
significant elements are those on the main diagonal. However,
there are non-zero elements related to the surrounding coarse-
graining cells which give the metric matrix its multi-diagonal
character. As shown, e.g., by Müller and Sun,27 this structure
of the metric matrix can be related to the continuity of
the density—or local mass conservation; in particular, it

FIG. 5. Committor function distribution for the image corresponding to the
maximum of the free energy profile, 17, and the image before, 16.
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0.5 is the surface of states having 50% of probability to reach
first the products and 50% to reach first the reactants. This
surface is the rigorous definition of the transition state.

Consider an isocommittor surface, S which intersects the
MFEP at a point z(↵). Let us denote by n↵ the normal to S at
z(↵) and by ⌧(z↵) the tangent to the MFEP at the same point.
In Ref. 20, it is shown that

⌧(z↵) k M̂n↵. (22)

If we compare Eq. (22) with Eq. (3), we conclude that the
MFEP is the path connecting constrained minima of the free-
energy on the isocommittor surfaces S↵ foliating the space.

Similar to the string method, CREaM aims at identifying
a wetting path. However, at variance with the string method,
in CREaM this path is not parametrized with its arc-length but
with an observable of relevance for the problem at hand. This
very general framework can be applied to di↵erent models,
ranging from the micro- to the macroscale; for the macroscopic
scale, in the sharp-interface model which was originally used
to describe the Cassie-Wenzel transition, the wetting path is
parametrized with the volume of liquid in the groove, Vl.
Like in the case of the string method, in CREaM the free-
energy is minimized subject to the constraint that the variable
parametrizing the path is constant. In other words, the path
obtained by CREaM connects the constrained minima of the
free-energy on the constant volume surfaces S

V
↵ .

Comparing this formulation of the CREaM path with
the formulation of the string path in terms of constrained
minimization of the free-energy in the isocommittor surface,
we conclude that the two paths coincide if and only if S

V
↵ ⌘ S↵,

at least locally to the path.
In Fig. 3(b), we compare the free-energy profiles obtained

via CREaM and via the interface string, as computed along
the respective paths.26 We note that the profiles coincide for
most of the path, departing from each other only in a relative-
ly small region around the transition state. This is not
surprising because, at variance with the string, CREaM does
not impose the continuity of the path. Thus, in the case of
the Cassie-Wenzel transition, which takes place through a
morphological transition (see Ref. 9 and Sec. V), CREaM
does not map the continuous path along which the symmetric
meniscus configuration goes into the bubble-in-a-corner one
(see Fig. 4).

In Fig. 3(b), we also report the free-energy profile
obtained from two distinct atomistic approaches: the string
method explained in Sec. II B and the RMD introduced in a
previous work.18 The latter method is the atomistic counterpart
of CREaM9 and indeed the two free-energy profiles nicely
overlap. The atomistic string appears to better agree with
CREaM and RMD than with the interface string. In the sharp
interface limit �/h ! 0, the interface string yields a larger
free-energy barrier; also, the position of the transition state is
shifted towards higher filling levels as compared with the other
cases. The reason for this discrepancy is discussed in Sec. V;
here, we note that it may arise because of “errors cancellation”
in CREaM: the underestimation of the barrier due to neglecting
the details of the path close to the transition state compensates
for an overestimation intrinsic to the sharp-interface models.

Summarizing, the paths obtained from CREaM and the
string method are not identical but give the same qualitative
description of the process. While the string method gives a
detailed and continuous description of the most likely wetting
path all along the process, CREaM represents the segment
around the transition state as a sharp morphological transition
(Fig. 4). Indeed, CREaM and the string can be used as
complementary tools. CREaM allows to e�ciently compute
all the possible “reactive” channels. The string method can
then be used to further refine the CREaM paths. When the
system is relatively simple, like the case of wetting of a square
groove,9 it is possible to obtain the analytical solution of the
CREaM equations. Thanks to CREaM, it was possible to
derive an extended version of the Laplace equation, which
relates the driving force of the Cassie-Wenzel transition to
the meniscus curvature and to surface tension. This relation,
that was introduced for the first time in Ref. 9, is valid along
most of the wetting path, apart in the region connecting the
symmetric meniscus and bubble-in-a-corner morphologies.
Finally, CREaM has a high parallel e�ciency, even higher

FIG. 3. (a) Transition path computed via the interface string. (b) Rescaled
excess free-energy �⌦ along the interface string for �p̃ = 0, ⇠ = 1, �/h
= 0.0001, ✓Y = 110�, and N = 140 (green solid line). �⌦ for the inter-
face string is compared to the profiles computed via the atomistic string,
CREaM, and RMD simulations at the same thermodynamic conditions.
The profiles are shifted along the ordinates so that the Cassie states co-
incide at �⌦= 0. This allows for a better comparison among the free-
energy profiles, because the atomistic ones are obtained by forward in-
tegration of the mean force, resulting in larger errors at high filling lev-
els.18 On the abscissae, we report the parametric variable Vl/Vtot of the
CREaM method; for the interface string, Vl/Vtot is computed from the path
in the top panel, while for RMD and the atomistic string, Vl/Vtot= (Z
�Zcassie)/(Zwenzel�Zcassie), where Z is the total number of particles inside the
coarse-graining cell(s). (c) Behavior of the interface string around the saddle
point for di↵erent �/h; the free-energy profile obtained via the atomistic string
is reported for comparison. The saddle point corresponds to the configuration
where the liquid-vapor interface touches the bottom of the capillary, between
images 3 and 4 of the path in panel (a). (Multimedia view) [URL: http://dx.
doi.org/10.1063/1.4913839.1]
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0.5 is the surface of states having 50% of probability to reach
first the products and 50% to reach first the reactants. This
surface is the rigorous definition of the transition state.

Consider an isocommittor surface, S which intersects the
MFEP at a point z(↵). Let us denote by n↵ the normal to S at
z(↵) and by ⌧(z↵) the tangent to the MFEP at the same point.
In Ref. 20, it is shown that

⌧(z↵) k M̂n↵. (22)

If we compare Eq. (22) with Eq. (3), we conclude that the
MFEP is the path connecting constrained minima of the free-
energy on the isocommittor surfaces S↵ foliating the space.

Similar to the string method, CREaM aims at identifying
a wetting path. However, at variance with the string method,
in CREaM this path is not parametrized with its arc-length but
with an observable of relevance for the problem at hand. This
very general framework can be applied to di↵erent models,
ranging from the micro- to the macroscale; for the macroscopic
scale, in the sharp-interface model which was originally used
to describe the Cassie-Wenzel transition, the wetting path is
parametrized with the volume of liquid in the groove, Vl.
Like in the case of the string method, in CREaM the free-
energy is minimized subject to the constraint that the variable
parametrizing the path is constant. In other words, the path
obtained by CREaM connects the constrained minima of the
free-energy on the constant volume surfaces S

V
↵ .

Comparing this formulation of the CREaM path with
the formulation of the string path in terms of constrained
minimization of the free-energy in the isocommittor surface,
we conclude that the two paths coincide if and only if S

V
↵ ⌘ S↵,

at least locally to the path.
In Fig. 3(b), we compare the free-energy profiles obtained

via CREaM and via the interface string, as computed along
the respective paths.26 We note that the profiles coincide for
most of the path, departing from each other only in a relative-
ly small region around the transition state. This is not
surprising because, at variance with the string, CREaM does
not impose the continuity of the path. Thus, in the case of
the Cassie-Wenzel transition, which takes place through a
morphological transition (see Ref. 9 and Sec. V), CREaM
does not map the continuous path along which the symmetric
meniscus configuration goes into the bubble-in-a-corner one
(see Fig. 4).

In Fig. 3(b), we also report the free-energy profile
obtained from two distinct atomistic approaches: the string
method explained in Sec. II B and the RMD introduced in a
previous work.18 The latter method is the atomistic counterpart
of CREaM9 and indeed the two free-energy profiles nicely
overlap. The atomistic string appears to better agree with
CREaM and RMD than with the interface string. In the sharp
interface limit �/h ! 0, the interface string yields a larger
free-energy barrier; also, the position of the transition state is
shifted towards higher filling levels as compared with the other
cases. The reason for this discrepancy is discussed in Sec. V;
here, we note that it may arise because of “errors cancellation”
in CREaM: the underestimation of the barrier due to neglecting
the details of the path close to the transition state compensates
for an overestimation intrinsic to the sharp-interface models.

Summarizing, the paths obtained from CREaM and the
string method are not identical but give the same qualitative
description of the process. While the string method gives a
detailed and continuous description of the most likely wetting
path all along the process, CREaM represents the segment
around the transition state as a sharp morphological transition
(Fig. 4). Indeed, CREaM and the string can be used as
complementary tools. CREaM allows to e�ciently compute
all the possible “reactive” channels. The string method can
then be used to further refine the CREaM paths. When the
system is relatively simple, like the case of wetting of a square
groove,9 it is possible to obtain the analytical solution of the
CREaM equations. Thanks to CREaM, it was possible to
derive an extended version of the Laplace equation, which
relates the driving force of the Cassie-Wenzel transition to
the meniscus curvature and to surface tension. This relation,
that was introduced for the first time in Ref. 9, is valid along
most of the wetting path, apart in the region connecting the
symmetric meniscus and bubble-in-a-corner morphologies.
Finally, CREaM has a high parallel e�ciency, even higher

FIG. 3. (a) Transition path computed via the interface string. (b) Rescaled
excess free-energy �⌦ along the interface string for �p̃ = 0, ⇠ = 1, �/h
= 0.0001, ✓Y = 110�, and N = 140 (green solid line). �⌦ for the inter-
face string is compared to the profiles computed via the atomistic string,
CREaM, and RMD simulations at the same thermodynamic conditions.
The profiles are shifted along the ordinates so that the Cassie states co-
incide at �⌦= 0. This allows for a better comparison among the free-
energy profiles, because the atomistic ones are obtained by forward in-
tegration of the mean force, resulting in larger errors at high filling lev-
els.18 On the abscissae, we report the parametric variable Vl/Vtot of the
CREaM method; for the interface string, Vl/Vtot is computed from the path
in the top panel, while for RMD and the atomistic string, Vl/Vtot= (Z
�Zcassie)/(Zwenzel�Zcassie), where Z is the total number of particles inside the
coarse-graining cell(s). (c) Behavior of the interface string around the saddle
point for di↵erent �/h; the free-energy profile obtained via the atomistic string
is reported for comparison. The saddle point corresponds to the configuration
where the liquid-vapor interface touches the bottom of the capillary, between
images 3 and 4 of the path in panel (a). (Multimedia view) [URL: http://dx.
doi.org/10.1063/1.4913839.1]
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0.5 is the surface of states having 50% of probability to reach
first the products and 50% to reach first the reactants. This
surface is the rigorous definition of the transition state.

Consider an isocommittor surface, S which intersects the
MFEP at a point z(↵). Let us denote by n↵ the normal to S at
z(↵) and by ⌧(z↵) the tangent to the MFEP at the same point.
In Ref. 20, it is shown that

⌧(z↵) k M̂n↵. (22)

If we compare Eq. (22) with Eq. (3), we conclude that the
MFEP is the path connecting constrained minima of the free-
energy on the isocommittor surfaces S↵ foliating the space.

Similar to the string method, CREaM aims at identifying
a wetting path. However, at variance with the string method,
in CREaM this path is not parametrized with its arc-length but
with an observable of relevance for the problem at hand. This
very general framework can be applied to di↵erent models,
ranging from the micro- to the macroscale; for the macroscopic
scale, in the sharp-interface model which was originally used
to describe the Cassie-Wenzel transition, the wetting path is
parametrized with the volume of liquid in the groove, Vl.
Like in the case of the string method, in CREaM the free-
energy is minimized subject to the constraint that the variable
parametrizing the path is constant. In other words, the path
obtained by CREaM connects the constrained minima of the
free-energy on the constant volume surfaces S

V
↵ .

Comparing this formulation of the CREaM path with
the formulation of the string path in terms of constrained
minimization of the free-energy in the isocommittor surface,
we conclude that the two paths coincide if and only if S

V
↵ ⌘ S↵,

at least locally to the path.
In Fig. 3(b), we compare the free-energy profiles obtained

via CREaM and via the interface string, as computed along
the respective paths.26 We note that the profiles coincide for
most of the path, departing from each other only in a relative-
ly small region around the transition state. This is not
surprising because, at variance with the string, CREaM does
not impose the continuity of the path. Thus, in the case of
the Cassie-Wenzel transition, which takes place through a
morphological transition (see Ref. 9 and Sec. V), CREaM
does not map the continuous path along which the symmetric
meniscus configuration goes into the bubble-in-a-corner one
(see Fig. 4).

In Fig. 3(b), we also report the free-energy profile
obtained from two distinct atomistic approaches: the string
method explained in Sec. II B and the RMD introduced in a
previous work.18 The latter method is the atomistic counterpart
of CREaM9 and indeed the two free-energy profiles nicely
overlap. The atomistic string appears to better agree with
CREaM and RMD than with the interface string. In the sharp
interface limit �/h ! 0, the interface string yields a larger
free-energy barrier; also, the position of the transition state is
shifted towards higher filling levels as compared with the other
cases. The reason for this discrepancy is discussed in Sec. V;
here, we note that it may arise because of “errors cancellation”
in CREaM: the underestimation of the barrier due to neglecting
the details of the path close to the transition state compensates
for an overestimation intrinsic to the sharp-interface models.

Summarizing, the paths obtained from CREaM and the
string method are not identical but give the same qualitative
description of the process. While the string method gives a
detailed and continuous description of the most likely wetting
path all along the process, CREaM represents the segment
around the transition state as a sharp morphological transition
(Fig. 4). Indeed, CREaM and the string can be used as
complementary tools. CREaM allows to e�ciently compute
all the possible “reactive” channels. The string method can
then be used to further refine the CREaM paths. When the
system is relatively simple, like the case of wetting of a square
groove,9 it is possible to obtain the analytical solution of the
CREaM equations. Thanks to CREaM, it was possible to
derive an extended version of the Laplace equation, which
relates the driving force of the Cassie-Wenzel transition to
the meniscus curvature and to surface tension. This relation,
that was introduced for the first time in Ref. 9, is valid along
most of the wetting path, apart in the region connecting the
symmetric meniscus and bubble-in-a-corner morphologies.
Finally, CREaM has a high parallel e�ciency, even higher

FIG. 3. (a) Transition path computed via the interface string. (b) Rescaled
excess free-energy �⌦ along the interface string for �p̃ = 0, ⇠ = 1, �/h
= 0.0001, ✓Y = 110�, and N = 140 (green solid line). �⌦ for the inter-
face string is compared to the profiles computed via the atomistic string,
CREaM, and RMD simulations at the same thermodynamic conditions.
The profiles are shifted along the ordinates so that the Cassie states co-
incide at �⌦= 0. This allows for a better comparison among the free-
energy profiles, because the atomistic ones are obtained by forward in-
tegration of the mean force, resulting in larger errors at high filling lev-
els.18 On the abscissae, we report the parametric variable Vl/Vtot of the
CREaM method; for the interface string, Vl/Vtot is computed from the path
in the top panel, while for RMD and the atomistic string, Vl/Vtot= (Z
�Zcassie)/(Zwenzel�Zcassie), where Z is the total number of particles inside the
coarse-graining cell(s). (c) Behavior of the interface string around the saddle
point for di↵erent �/h; the free-energy profile obtained via the atomistic string
is reported for comparison. The saddle point corresponds to the configuration
where the liquid-vapor interface touches the bottom of the capillary, between
images 3 and 4 of the path in panel (a). (Multimedia view) [URL: http://dx.
doi.org/10.1063/1.4913839.1]
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example, refs 22 and 23. At ambient conditions the free energy
of the system presents two minima (Figure 1c): an absolute
minimum (the stable state, Cassie−Baxter in the hypothesis)
and a local minimum (the metastable Wenzel state) separated
by a free-energy barrier ΔΩCW

† . Thus, if this specific system is
initially prepared in the Cassie−Baxter state it remains in this
state. When the pressure increases, the difference of free energy
ΔΩCW = ΩC − ΩW between the Cassie−Baxter and Wenzel
states increases from negative values. Eventually, ΔΩCW
becomes zero at the heterogeneous coexistence pressure Pco

(Figure 1d) and positive for P > Pco (Figure 1e). At moderate
pressures the barrier separating the Cassie−Baxter and Wenzel
states, ΔΩCW

† , is much larger than the thermal energy available
to the system, kBT, where kB is the Boltzmann constant and T
the temperature. Thus, the transition time τ = τ0 exp(ΔΩCW

† /
kBT)

24,25 is longer than the typical experimental time of
observation. Therefore, the system remains kinetically trapped
in the Cassie−Baxter state even when this is metastable. Upon
additional increase of the pressure, the barrier decreases until it
becomes small enough that the system can readily undergo the
Cassie−Baxter/Wenzel transition (Figure 1f). If the initial
external conditions are restored, the recovery barrier ΔΩWC

† is
very large, the system remains kinetically trapped in the Wenzel
state (Figure 1b), and recovery cannot be achieved. This
thought experiment illustrates why several experimental and
theoretical works22,23,26 report that the Cassie−Baxter/Wenzel
transition is irreversible for standard surfaces operating near
ambient conditions.
Several strategies have been developed to preserve27−30 or

recover31−33 the Cassie−Baxter state. Hierarchical surfaces have
been fabricated to increase the intrusion pressure, but no
quantitative design criteria have been identified yet to fabricate
optimal systems. Active approaches to enhance wetting
resistance have also been considered, such as pressurization
of the gas layer,28,29 but this adds complexity to the system.
Concerning the recovery, several strategies have been
developed, including the in situ development (and spread) of
gas,31 electrical switching,32,34 mechanical vibration,33 but these
approaches are costly and difficult to realize.

Ideally, a superhydrophobic surface should be able to
withstand the highest possible pressure without undergoing a
wetting transition22,23,35−41 and recover the Cassie−Baxter state
once the perturbation has ceased (self-recovery). Pioneering
attempts to design surfaces with these characteristics were
based on heuristic hypotheses on the Cassie−Baxter/Wenzel
transition mechanism.42−46 More recently, Prakash et al.47 have
proposed the modification of the internal part of nanopillar
surfaces by a sphere of hydrophobic material to enhance the
resistance to the wetting and promote the recovery. A possible
drawback of this approach is that the hydrophobic sphere
necessary to make the recovery barrier negligible occupies most
of the surface cavities, which might affect the function of the
surface. Giacomello et al.48 have shown that self-recovery can
be achieved even at large pressures, if the surface textures have
the characteristic size of 2 nm or less; the precise dimension
depends on the contact angle of the surface. Here, building
upon these early attempts we identify design principles of self-
recovery surfaces which do not affect their functional
properties.
To achieve our objectives, we first consider a number of

surfaces with textures of technological interest and investigate
their properties with respect to liquid intrusion and extrusion.
In particular, we focus on surfaces decorated with circular and
square pores, square pillars, and ridges of nanoscopic size
(Figure 2a−d). For these systems we investigate the depend-
ence of the wetting and recovery barriers on the liquid. From
this analysis we identify the fundamental design principles
affecting the resistance to wetting and self-recovery abilities.
Second, on the basis of the wetting properties of simple texture
morphologies, we design surfaces combining good super-
hydrophobic characteristics, robustness of the Cassie−Baxter
state, and self-recovery properties (Figure 2e,f). For our best
surface, we also identify the maximum possible size of the
texture that still allows self-recovery, which is a key fabrication
parameter.
The present analysis is based on a combined macro- and

microscopic approach. The wetting and recovery mechanism
and barrier of the extended set of systems is studied by the
continuum rare events method (CREaM),36 which identifies

Figure 1. Cartoon illustrating the configuration of the Cassie−Baxter (a) and Wenzel (b) states, the metastable states of a system consisting of
a liquid (l) and gas (g) in contact with a solid surface (s) with (simple) textures. In panel (b) are illustrated the characteristic dimensions of
the surface textures considered in the present work: the thickness W, the spacing (pitch) S, and the height H. (c−f) Cartoon of energy profiles
along the wetting/recovery process at various pressures (pressure increases in going from panels c to f). At low pressure (c) Cassie−Baxter is
stable and Wenzel is metastable. Increasing the pressure, the heterogeneous coexistence is achieved (d) at which the two states (minima) have
the same free energy. Further increasing the pressure, Wenzel becomes the stable state (e), but the two states are still separated by a large
barrier, much higher than the thermal energy. Finally, at large pressures, there is no minimum in correspondence of the Cassie−Baxter state:
Wenzel is the only stable state available to the system.
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transition barriers for a liquid in a complex confining
environment based on the sharp interface model of a solid−
liquid−gas system. For selected systems, results are validated by
standard (MD) and by restrained molecular dynamics
(RMD),49,50 a simulation technique designed to compute the
free-energy profile of systems characterized by large free-energy
barriers.
Anticipating our results, we show that the recovery barrier is

essentially determined by the morphology and geometrical
characteristics of the bottom of the corrugations, while the
wetting barrier is mainly associated with the characteristics of
the top part of the textures. It turns out that the most efficient
topography for self-recovery is the surface with square
nanopores, which, however, typically has a large liquid/solid
contact area, resulting in unsatisfactory superhydrophobic
properties. Moreover, in square-pore surfaces, one of the
walls of the textures is orthogonal to the flow, which might limit
drag reduction. Pillar and ridge surfaces, on the contrary,
present lower liquid/solid contact areas and perform better at
reducing drag,51 but their recovery barrier is very large making
the wetting process typically irreversible. These observations
brought us to propose a modular design of textured surfaces
consisting of the combination of simple texture morphologies
of the kinds listed above. In particular, we have found that the
combination of ridges and square pores, resulting in a
topography of ridge textures with transversal bulkheads at
their bottom, renders surfaces highly resistant to wetting,
capable of self-recovery, and retaining the good super-
hydrophobic properties of ridges.

RESULTS AND DISCUSSION
We study the thermodynamics and kinetics of the wetting and
recovery by considering the grand potential Ω of the system as
a function of the volume of gas Vg in the surface corrugations.
This grand potential profile is obtained from a macroscopic

model of the three-phase solid−liquid−gas system as explained
in the Methods section. From the grand potential profile
(Figure 1c−e) one obtains the wetting ΔΩCW

† and recovery
ΔΩWC

† barriers at different pressures. In the present work we
take as the operative definition of intrusion pressure, Pint

(extrusion pressure, Pext), the pressure at which the wetting
(recovery) barrier is 25kBT, corresponding to a transition time
τ = τ0 exp(ΔΩ†/kBT) = 1 s,25 that is, the order of magnitude of
typical experimental time. From Ω one obtains also the
coexistence pressure Pco for the heterogeneous system, that is,
the pressure at which the Cassie−Baxter and Wenzel states
have the same grand potential (Figure 1d).
The three-phase system is described in terms of the sharp

interface model, consisting of solid, liquid, and gas bulk
domains separated by sharp discontinuities at their interfaces.
The corresponding grand potential is the sum of bulk and
interface terms: Ω = −PsVs − PlVl − PgVg + γslAsl + γlgAlg +
γsgAsg, where Px and Vx are the pressure and volume of a generic
phase x and γxy and Axy are the surface tension and area
between the x and y phases, respectively. Considering that the
solid surface does not change during the process, the state of
the system is fully characterized by the liquid/gas interface
the meniscuswhose intersection with the solid surface
determines the volume of each phase and the areas of the
various interfaces. The (excess) grand potential can be recast
into the more convenient form:

γ θΔΩ = Δ + +PV A A( cos )g lg lg Y sg (1)

where the Young contact angle cos θY = (γsg − γsl)/γlg depends
on the chemical nature of the solid, liquid, and gas and ΔP = Pl
− Pg is the difference between the pressure of the liquid and the
gas. Within the sharp interface approximation, in which surface
tension terms do not depend on the pressure, for a given
surface morphology and chemistry, ΔP determines the relative
stability of the Cassie−Baxter and Wenzel states. For

Figure 2. Surface textures considered in this work together with grand-potential profiles expressed in kBT units as a function of gas volume
fraction (ϕg) in the cavities at ambient conditions (ΔP ≈ 0.1 MPa). (a) Circular and (b) square pores, (c) pillars, and (d) ridges. The final
panels show the proposed modular textures: (e) square pores/pillars and (f) square pores/ridges.
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ones in the first part of the grand canonical potential profile,
when the meniscus is within the pore. However, at variance
with the square-pore/pillar surface, the barrier between the
internal and external Cassie−Baxter states is negligible at
ambient conditions, and the system is capable of full self-
recovery. It is worth remarking that the for square-pore/ridge,
the intermediate Cassie−Baxter state exists only at pressures
greater than ca. 3.5 MPa.
In summary, the modular square-pore/ridge surface

combines self-recovery properties characterized by positive
extrusion pressure (Pext = 2.0 MPa, associated with the W → iC
step of the path) to good functional properties, for example, an
apparent contact angle of θ = 164°. Further analysis shows that
textured surfaces of this morphology can achieve self-recovery
at ambient conditions up to a characteristic length of S ∼ 20
nm (see Figure SI5). This size is typically smaller than the one
achievable for the fabrication of complex textures by top down
approaches, such as standard photolithography.56−58 To go
beyond this limitation, in the future we plan to study textures of
simpler fabrication based on the modular principles established
in this work. Nevertheless, within the length scale accessible by
standard photolitography59 modular design enhances and
facilitates the recovery with active approaches (see Figure
SI7). It must be remarked that specialized techniques have been
recently introduced60,61 which are very promising for the
fabrication of nanoscopic textured surfaces in the range
investigated in the present work (10−20 nm) and might be
used to implement the modular design proposed here.
Comparison with Molecular Dynamics. The sharp

interface model adopted for modeling the continuum multi-
phase system implies a number of approximations which might
affect the value of the wetting and recovery barriers, especially
at the nanoscale. Thus, to validate the results discussed above,
we have performed atomistic simulations of the recovery of the
modular square-pore/ridge surface. The atomistic square-pore/
ridge surface, shown in Figure SI2, is obtained from a face-
centered cubic crystal of Lennard-Jones (LJ) particles with a

0.36 nm lattice parameter. The solid particles interact with the
oxygen atoms of the water molecules by a modified LJ
potential, which allowed us to tune the Young contact angle of
the material to the same value used in the continuum
calculations. More details are given in the Methods section.
The atomistic texture pitch, thickness, and height are S = 29
atoms,W = 6 atoms, and H = 25 atoms, of which 11 are relative
to the pore. These correspond to slightly different values from
those used in the previous section, namely S = 10 nm, W = 2
nm, and H = 9 nm, of which 4 nm are relative to the pore and 5
nm to the ridge. The direct comparison of atomistic results with
continuum calculations in Figure 3 has been performed using
these latter values.
We prepared the system in the Wenzel state (Figure 3a) and

ran a constant pressure and temperature simulation at ambient
conditions (further details in the Methods section). Soon after
the beginning of the simulation the gas fraction ϕg in the
corrugation increases to values corresponding to the formation
of a supercritical bubble, indicating the presence of a negligible
recovery barrier, of the order of the thermal energy of the
system, kBT. The recovery accelerates during the process (ϕ̈g >
0) and, in agreement with continuum predictions, the system
does not remain pinned at the internal Cassie−Baxter state.
Finally, when the meniscus reaches the top of the ridges, ϕg
shows damped oscillations resulting from the combined effect
of inertia of the system, the pinning of the meniscus at the
corners of ridges, and the viscosity of liquid.
To explain the recovery dynamics and draw a more direct

comparison with the free-energy sharp interface calculations, we
computed the atomistic free energy profile as a function of the
liquid fraction by restrained molecular dynamics (see section
Methods for details). Atomistic and sharp interface results are
consistent both from the point of view of the recovery
mechanism (Figure 3c-d) and of the energetics (Figure 3b).
For both models the recovery starts with the formation of a gas
bubble at a corner of the square pore. The bubble then spreads
along the bottom corners of the pore one after the other until it

Figure 3. (a) Gas volume fraction as a function of time along a MD starting from the Wenzel state at ambient conditions for the square pore/
ridge surface. Complete recovery is achieved within 1.5 ns. (b) Comparison between the atomistic and continuum grand potential; continuum
data has been obtained without any fitting of atomistic results. The gray area represents the confidence interval associated with the
determination of the atomistic Ω profile. (c and d) Selected meniscus configurations observed along recovery in continuum and atomistic
simulations, respectively, at corresponding ϕg values.
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Figure SI4: a) free energy profiles as a function of gas volume fraction for the meniscus
morphologies represented in d); b) magnification of a) in the range of 0  �g  0.3 to let
better appreciate the regions of morphology switching; c) the continuum free energy profile
obtained by selecting the branch of curve of minimal energy for each value of �g, as prescribed
by the Continuum Rare Events Method (CREaM); d) succession of configurations for the
gaseous domain corresponding to the profiles reported in a).
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hysteresisthe difference between intrusion and extrusion
pressuresand of the strategies to control it.
The aforementioned cases illustrate how pressure hysteresis

determines the use of HLSs. Notwithstanding its technological
relevance, the design of systems with controlled pressure
hysteresis remains a challenge due to the lack of predictive
theories. It is known that both the intrusion and extrusion
pressures depend on the chemistry and on the geometry of the
pores,3,6,9,14,18 suggesting a route to control these phenomena.
This insight is in agreement with the vast corpus focusing on
the hydrophobic effect, which has demonstrated that, in a
variety of geometries, the formation of a confined vapor phase
analogous to extrusion is facilitated by hydrophobic
cavities;19−30 such drying phenomena are of importance in
diverse fields, including solution chemistry, protein folding,
and superhydrophobicity. However, while for the intrusion
pressure Laplace’s law,2,4,31 with nanoscale deviations for the
smallest pores,32 is known to work, for extrusion a
comprehensive theory is still lacking in complex geometries.
This lack of a quantitative understanding severely limits the
exploitation of nanoconfined liquids in applications: for
instance, rationalizing the early suggestion that bubbles within
the pores facilitate pore dewetting33 could lead to improved
strategies to control the pressure hysteresis of HLS.
The aim of the present paper is to understand the

characteristics of a porous material that determine its extrusion
behavior and to suggest flexible strategies to control the
phenomenon. In particular, we focus on two commercial
porous materials with similar pore sizes and chemistry but
whose internal featurespore interconnections or roughness
of the internal surfacesignificantly differ. Our experiments
show that these materials have qualitatively different behavior
for what concerns water extrusion: in one case, the liquid is
forced out of the pores at pressures as large as a few
megapascals; in the other case, instead, it does not extrude
even when the pressure is decreased to the ambient value. In
order to understand the origin of this qualitative difference, we
employ models of pores that account for the essential topology
of the two materials: one with independent pores and one with
interconnected ones. We consider an increasing degree of
sophistication for the behavior of water and for the solid−
liquid interaction: a macroscopic capillarity model and a fully
atomistic one; in the latter, mesoscale and nanoscale effects
such as disjoining pressure, line tension, and Tolman

corrections, are accounted for by the interatomic potentials
without the need of ad hoc models. First, in the section
Extrusion: Theory, the macroscopic model suggests that pore
interconnections are a plausible explanation of extrusion in
HLS. Second, in the section Extrusion: Molecular Dynamics,
atomistic simulations confirm that extrusion can be induced by
internal roughness: free-energy calculations show a significant
reduction of the extrusion free-energy barrier compatible with
the extrusion time recorded in experiments. Additional in silico
intrusion−extrusion experiments substantiate our explanation
in pressure cycles. In the final section before the conclusions,
we demonstrate experimentally that the findings obtained with
water are general and apply also to the case of other
nonwetting liquids and different porous materials.
Summarizing, by combining experiments, macroscopic

theory, and atomistic simulation, this work elucidates the
role of nanoscale surface roughness or pore interconnections
on the extrusion of liquids from nanoporous materials. The
present results are valuable to further the development not
only of HLSs but also of a broad variety of applications in
which controlling the behavior of nanoconfined liquids is
essential.

RESULTS AND DISCUSSION
Experiments. The aim of the present experiments is to

reveal the effect of pore topology on the intrusion−extrusion
pressure hysteresis. For this purpose, two hydrophobic porous
materials with similar pore sizes but different internal
morphologies were subjected to high-pressure intrusion−
extrusion experiments with water as the working liquid. Both
materialsRPB and WC8were commercial silica gels
grafted with a hydrophobic coating following the same
protocol (see also the Methods section for further details on
the materials). The resulting surface chemistries are charac-
terized by the same (apparent) contact angle as measured from
compacted silica pellets (see the Supporting Information,
Figure SI1).
As a preliminary step, the two materials were characterized

by transmission electron microscopy (TEM) and scanning
electron microscopy (SEM). The TEM micrographs in Figure
1a and b show that the topology of the pores is very different
for the two materials: RPB is characterized by independent
pores with an approximately cylindrical shape, while WC8 by
randomly intersecting spheres. The disordered distribution of

Figure 1. TEM micrographs of the RPB (a) and WC8 (b) samples, showing the semi-independent pores and the highly interconnected ones
characterizing the two materials, respectively. Insets are schematic representations of the pore topology. (c) Experimental intrusion and
extrusion cycles for (RPB + water) and (WC8 + water). The (RPB + water) HLS did not show extrusion upon decreasing the pressure to the
ambient value, while complete expulsion of water was observed for the (WC8 + water) HLS.
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strategies to control the pressure hysteresis of HLS.
The aim of the present paper is to understand the

characteristics of a porous material that determine its extrusion
behavior and to suggest flexible strategies to control the
phenomenon. In particular, we focus on two commercial
porous materials with similar pore sizes and chemistry but
whose internal featurespore interconnections or roughness
of the internal surfacesignificantly differ. Our experiments
show that these materials have qualitatively different behavior
for what concerns water extrusion: in one case, the liquid is
forced out of the pores at pressures as large as a few
megapascals; in the other case, instead, it does not extrude
even when the pressure is decreased to the ambient value. In
order to understand the origin of this qualitative difference, we
employ models of pores that account for the essential topology
of the two materials: one with independent pores and one with
interconnected ones. We consider an increasing degree of
sophistication for the behavior of water and for the solid−
liquid interaction: a macroscopic capillarity model and a fully
atomistic one; in the latter, mesoscale and nanoscale effects
such as disjoining pressure, line tension, and Tolman

corrections, are accounted for by the interatomic potentials
without the need of ad hoc models. First, in the section
Extrusion: Theory, the macroscopic model suggests that pore
interconnections are a plausible explanation of extrusion in
HLS. Second, in the section Extrusion: Molecular Dynamics,
atomistic simulations confirm that extrusion can be induced by
internal roughness: free-energy calculations show a significant
reduction of the extrusion free-energy barrier compatible with
the extrusion time recorded in experiments. Additional in silico
intrusion−extrusion experiments substantiate our explanation
in pressure cycles. In the final section before the conclusions,
we demonstrate experimentally that the findings obtained with
water are general and apply also to the case of other
nonwetting liquids and different porous materials.
Summarizing, by combining experiments, macroscopic

theory, and atomistic simulation, this work elucidates the
role of nanoscale surface roughness or pore interconnections
on the extrusion of liquids from nanoporous materials. The
present results are valuable to further the development not
only of HLSs but also of a broad variety of applications in
which controlling the behavior of nanoconfined liquids is
essential.

RESULTS AND DISCUSSION
Experiments. The aim of the present experiments is to

reveal the effect of pore topology on the intrusion−extrusion
pressure hysteresis. For this purpose, two hydrophobic porous
materials with similar pore sizes but different internal
morphologies were subjected to high-pressure intrusion−
extrusion experiments with water as the working liquid. Both
materialsRPB and WC8were commercial silica gels
grafted with a hydrophobic coating following the same
protocol (see also the Methods section for further details on
the materials). The resulting surface chemistries are charac-
terized by the same (apparent) contact angle as measured from
compacted silica pellets (see the Supporting Information,
Figure SI1).
As a preliminary step, the two materials were characterized

by transmission electron microscopy (TEM) and scanning
electron microscopy (SEM). The TEM micrographs in Figure
1a and b show that the topology of the pores is very different
for the two materials: RPB is characterized by independent
pores with an approximately cylindrical shape, while WC8 by
randomly intersecting spheres. The disordered distribution of

Figure 1. TEM micrographs of the RPB (a) and WC8 (b) samples, showing the semi-independent pores and the highly interconnected ones
characterizing the two materials, respectively. Insets are schematic representations of the pore topology. (c) Experimental intrusion and
extrusion cycles for (RPB + water) and (WC8 + water). The (RPB + water) HLS did not show extrusion upon decreasing the pressure to the
ambient value, while complete expulsion of water was observed for the (WC8 + water) HLS.
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imation are typically larger48 than those predicted by atomistic
simulations due to the presence of diffuse interfaces.
Finally, we remark that, consistently with the hypothesis put

forward in the previous section, at ΔP = 0 cylindrical
nanocavities are always devoid of liquid, as one deduces
from the absence of any minimum of the free energy in
correspondence to the their wet state (Φ > 1).
The (computationally expensive) free-energy simulations,

performed at ΔP = 0, suggested that internal roughness or pore
interconnections indeed facilitate extrusion. In order to ensure
that this behavior is actually observed in experiments in which
the pressure is varied, we performed the in silico equivalent of
the experiments in Figure 1c; see also ref 49. Figure 3 reports

the simulated intrusion and extrusion cycle for the smooth
pore and for the bomb with χs = 0.47 at T = 300 K. The
simulation details are found in the Methods section and in the
Supporting Information.
The numerical experiment for the smooth pore (Figure 3a)

was initialized with the pore in the empty state (Φ = 0) at ΔP
= 0 MPa. As the pressure was increased, the pore remained
empty with the meniscus pinned at the mouth and
progressively sagging into the pore (ΔP < 23 MPa). When a
critical pressure value (intrusion pressure) was reached, ΔPint =
23 MPa, water abruptly wet the pore, reaching Φ = 1. The
value of the MD intrusion pressure was close to the
experimental one and in fair agreement with the macroscopic
expectation given by Laplace’s law, ΔPint ≈ 21 MPa, where the
values γ = 0.062 N/m (the surface tension of TIP4P-Ew
water50), α = 15°, θY = 118°, and rm ≈ 4 nm were used. Finally,
any further increase of the pressure produced minor changes in
Φ due to the low compressibility of water.
From the condition ΔP = 50 MPa and Φ = 1, the pressure

was progressively decreased (green line in Figure 3a). At the
minimum pressure reached in the actual experiments, ΔP = 0,
we did not observe extrusion of water out of the pore: this
behavior is compatible with RPB, for which no extrusion was
observed (Figure 1c). Unlike in experiments, in the MD
intrusion/extrusion cycle the time amenable of simulations is a
few nanoseconds; therefore, we continued depressurizing the
system down to negative pressures (tensile state) in order to
facilitate extrusion;6,49 in other words, in standard MD,
extrusion can be observed only when ΔΩ† is smaller than in
experiments. Even at large negative pressures (ΔP ≈ −40
MPa) water completely occupied the pore without extrusion.
These extreme tensile conditions are difficult to explore in
experiments but are easily accessible to simulation.

The same protocol was followed for the bomb geometry
(Figure 3b): the intrusion part of the process was equivalent to
the smooth pore, with the transition from the empty to the
fully wet state triggered at ΔPint = 23 MPa. Instead, during
decompression, when the system reached a pressure ΔPext =
−2 MPa, a bubble nucleated within the pore and the liquid was
extruded from the pore, restoring the empty state (the reason
for the relatively small negative extrusion pressure is explained
in the following). The comparison of the two virtual
intrusion−extrusion experiments in Figure 3 clearly shows
that surface roughness within the pores plays an important role
in determining the behavior of a porous material, causing a
qualitatively different extrusion behavior, even when the
intrusion behavior is similar. Finally, contrasting Figure 1c
and Figure 3 demonstrates that our atomistic models capture
the behavior of RPM and WC8 pores under intrusion−
extrusion experiments, based on minimal ingredients: they
have roughly the same sizes, identical surface chemistry (θY =
118°), but different topologies, which allows for extrusion in
the case of the interconnected WC8 pores (Figure 1).
In Figure SI7 of the Supporting Information we analyze the

effect of internal roughness on the cycle when the maximum
pressure is significantly larger than the intrusion one for the
main pore. In this case, the presence of internal roughness
causes a small additional intrusion/extrusion loop due to the
wetting of these nanocavities at very large pressures. This
second loop, however, becomes undetectable in actual
experiments if the internal roughness has a volume much
smaller than the main pores, as expected for pore
interconnections.
At variance with the actual experiment, in the MD pressure

cycle a relatively small negative extrusion pressure was
recorded (we restate that no extrusion was observed in the
smooth case). As explained above, the exact value of the
extrusion pressure depends on the time scale of the experiment
as implied by the expression for t(ΔP) obtained by combining
eqs 1 and 2; longer time scales correspond to higher pressures,
see, for example, Figure 5a of ref 6. In the MD experiment the
time scale was on the order of 10−9 s, while in the actual
experiment ca. 1 s. This difference in the observation time
scales therefore can explain the quantitative discrepancy
between the MD and the experimental extrusion pressures,
which is due to the much shorter time scale accessible to MD.
The quantitative discussion of this point is beyond the scope of
this paper and will be investigated in a forthcoming work.
Altogether, the simulation campaign has shown that the

characteristics of the internal surface of a porous material
critically affect its extrusion behavior. In particular, a second
tier of smaller nanocavities in the internal surface of the main
pores, corresponding to surface roughness or to the
interconnections between pores, facilitates the drying of the
pores, a result that accounts for the reported experimental
behavior. Such findings shed light on how the fine features of a
porous material influence pressure hysteresis, a step that
enables the control and optimization of the energy-related
capabilities of such materials.
In addition to porous materials for energy applications, the

present results are also relevant for understanding the wetting
and drying of superhydrophobic surfaces with different scales
of roughness: in this context, empty and wet states of the pores
correspond to the Cassie−Baxter44 (superhydrophobic) and
Wenzel51 (non-superhydrophobic) states of the nanotexture,
respectively. The present results demonstrate that a surface

Figure 3. (a) Filling of the pore as a function of the applied
pressure during an in silico experiment in which the pressure was
increased (red) and subsequently decreased (green). (b) Pore
filling as a function of pressure for an in silico intrusion (red) and
extrusion (green) experiment on a spherical-cap pore with internal
roughness with χs = 0.47. Unlike in the case of the smooth pore in
(a), the pore is completely emptied at slightly negative pressures.
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γ γ γΩ = Δ − Φ + + + +P V A A A(1 ) constp lv sv sv sl sl (2)

where ΔP = Pl − Pv, with Pl and Pv the pressures of the bulk
liquid water and vapor, respectively, Φ ≡ Vl/Vp is the filling
fraction defined by the ratio between the liquid volume Vl and
the total volume of the pore Vp, Alv, Asv, and Asl are the liquid−
vapor, solid−vapor, and solid−liquid surface areas, respec-
tively, and γ, γsv, and γsl are the corresponding surface tensions.
As for any thermodynamic potential, Ω is known up to a
constant, which is always set to zero in the following
expressions. The first term on the right-hand side of eq 2
corresponds to the energy of the bulk liquid and vapor in a
system containing both phases. The other three terms account
for the energy cost/gain related to the formation of liquid−
vapor, solid−liquid, and solid−vapor interfaces. Introducing
Young’s law cos θY ≡ (γsv − γsl)/γ, it is possible to recast eq 2
into the form21,22

γ θΩ = Δ − Φ + + +P V A A(1 ) ( cos ) constsv Yp lv (3)

which underscores the competition between γsv and γsl and
provides a geometric interpretation of capillarity, distinguishing
between hydrophobic surfaces (for which θY > 90° implies a
free-energy gain from drying) and hydrophilic (θY < 90°) ones.
The next ingredient required to compute the free-energy

barriers (and thus the nucleation kinetics) is the extrusion path
and the associated free energy.41 Here we use the continuum
rare event method (CREaM),37,42,43 in which the extrusion
path consists of the sequence of the meniscus morphologies
having the lowest free energy at each value of the filling
fraction Φ. The extrusion path originating from this
prescription is a sequence of spherical-cap menisci meeting
the interior of the pore with contact angle θY. In particular, the
vapor bubble delimited by the meniscus increases its volume,
Vv = (1 − Φ)Vp, during extrusion, encompassing the range
between the fully wet (Φ = 1) and the empty pore (Φ = 0).
Within the CREaM framework Alv and Asv are a function of Φ,
and, after setting the remaining thermodynamic parameters to
the experimental values, it was possible to evaluate via eq 2 the
free-energy prof ile as a function of Φ.
The CREaM approach explained above is applied to

minimal pore models designed to capture the essential
topology of the experimental pores together with their size
and surface chemistry: the independent pores of RPB are
schematized as smooth spherical caps of radius rp = 5 nm, with
a mouth of radius rm = 4 nm and with θY = 115° (Figure 2a,

left). The pore model for WC8 will be presented below. Figure
2a reports the free-energy profile connected with extrusion
from the smooth pore with spherical-cap geometry at ΔP = 0
MPa (cyan line). These parameters have been chosen to match
approximately the experimental materials and conditions. In
particular, the theoretical intrusion pressure computed for our
model via the macroscopic (sharp-interface) Laplace’s law,
ΔPint = −2γ cos(θY + α)/rm ≈ 23 MPa, is in fair agreement
with the experimental value, with γ = 0.072 N/m and α = 15°,
where α is the re-entrant angle of the pore mouth in Figure 2a.
The free-energy profile in Figure 2a shows a local minimum

(metastable state) in correspondence with the fully wet state at
Φ = 1, a maximum (unstable state, also referred to as transition
state), and the absolute minimum (stable state) at Φ = 0, with
the meniscus pinned at the pore mouth corresponding to the
extruded liquid (not shown). The extrusion free-energy barrier
is defined as ΔΩ† = Ωts − Ωf, where Ωts and Ωf are the free
energy of the transition state (free-energy maximum) and of
the filled pore, respectively.
In order to illustrate how changing the pressure determines

extrusion, we now follow a thought experiment, assuming a
slow variation of the pressure in agreement with the quasi-
static experimental procedure. At the beginning of the
extrusion process, when the pressure is high (30 MPa in the
present experiments), the system is in the fully wet state at Φ =
1; there, the free energy is lower than that at Φ = 0, i.e., ΔΩ =
Ωe − Ωf > 0 and the filled state is more stable than the empty
one. As the pressure decreases, ΔΩ becomes smaller and
eventually, at sufficiently low pressures, becomes negative and
the empty state is more stable than the filled one. However, the
barrier ΔΩ† might still be too large, determining the condition
t ≫ texp, where texp is the experimental time, and the extrusion
is not observed. Upon further reducing the pressure, the barrier
ΔΩ† becomes small enough (ΔΩ† ≈ 25 kBT, corresponding to
t = 1 s) such that t ≤ texp and extrusion takes place. Since ΔΩ†

is an increasing function of ΔP, to understand if a transition
can be observed on the experimental time scale at positive
pressures, it is sufficient to compute the free-energy barrier at
ΔP = 0. The sharp-interface model of the pores yields ΔΩ† ≈
400 kBT at ΔP = 0 (see Figure 2a, cyan line), which implies a
nucleation time t ≈ 10161 s, much larger than the age of the
universe. Only for barriers on the order of 25 kBT it is possible
to observe a transition in an experimentally relevant time.
The previous results show that the smooth, spherical-cap

pore model with contact angle and size approximately matched

Figure 2. Free energy as a function of the filling fraction computed via (a) the macroscopic sharp-interface model and (b) free-energy
molecular dynamics simulations for the pore geometries reported on the side panels with the same color code. (a) The free-energy profiles
close to Φ = 1 are calculated for θY = 115° and for three values of solid fraction, χs = 1 (cyan), χs = 0.62 (black), and χs = 0.23 (orange), as
illustrated in the sketches on the left, where light blue lines represent dry microroughness within the pore walls. (b) The atomistic results are
computed for θY = 118° and different solid fractions: smooth (χs = 1, red), χs = 0.65 (green), and χs = 0.47 (blue); the related free-energy
barriers are ΔΩ† = 155 kBT, 45 kBT, and 5 kBT, respectively. The insets illustrate two different levels of intrusion of the pore by water
corresponding to the free-energy minima of the χs = 0.65 case.
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where ΔP = Pl − Pv, with Pl and Pv the pressures of the bulk
liquid water and vapor, respectively, Φ ≡ Vl/Vp is the filling
fraction defined by the ratio between the liquid volume Vl and
the total volume of the pore Vp, Alv, Asv, and Asl are the liquid−
vapor, solid−vapor, and solid−liquid surface areas, respec-
tively, and γ, γsv, and γsl are the corresponding surface tensions.
As for any thermodynamic potential, Ω is known up to a
constant, which is always set to zero in the following
expressions. The first term on the right-hand side of eq 2
corresponds to the energy of the bulk liquid and vapor in a
system containing both phases. The other three terms account
for the energy cost/gain related to the formation of liquid−
vapor, solid−liquid, and solid−vapor interfaces. Introducing
Young’s law cos θY ≡ (γsv − γsl)/γ, it is possible to recast eq 2
into the form21,22

γ θΩ = Δ − Φ + + +P V A A(1 ) ( cos ) constsv Yp lv (3)

which underscores the competition between γsv and γsl and
provides a geometric interpretation of capillarity, distinguishing
between hydrophobic surfaces (for which θY > 90° implies a
free-energy gain from drying) and hydrophilic (θY < 90°) ones.
The next ingredient required to compute the free-energy

barriers (and thus the nucleation kinetics) is the extrusion path
and the associated free energy.41 Here we use the continuum
rare event method (CREaM),37,42,43 in which the extrusion
path consists of the sequence of the meniscus morphologies
having the lowest free energy at each value of the filling
fraction Φ. The extrusion path originating from this
prescription is a sequence of spherical-cap menisci meeting
the interior of the pore with contact angle θY. In particular, the
vapor bubble delimited by the meniscus increases its volume,
Vv = (1 − Φ)Vp, during extrusion, encompassing the range
between the fully wet (Φ = 1) and the empty pore (Φ = 0).
Within the CREaM framework Alv and Asv are a function of Φ,
and, after setting the remaining thermodynamic parameters to
the experimental values, it was possible to evaluate via eq 2 the
free-energy prof ile as a function of Φ.
The CREaM approach explained above is applied to

minimal pore models designed to capture the essential
topology of the experimental pores together with their size
and surface chemistry: the independent pores of RPB are
schematized as smooth spherical caps of radius rp = 5 nm, with
a mouth of radius rm = 4 nm and with θY = 115° (Figure 2a,

left). The pore model for WC8 will be presented below. Figure
2a reports the free-energy profile connected with extrusion
from the smooth pore with spherical-cap geometry at ΔP = 0
MPa (cyan line). These parameters have been chosen to match
approximately the experimental materials and conditions. In
particular, the theoretical intrusion pressure computed for our
model via the macroscopic (sharp-interface) Laplace’s law,
ΔPint = −2γ cos(θY + α)/rm ≈ 23 MPa, is in fair agreement
with the experimental value, with γ = 0.072 N/m and α = 15°,
where α is the re-entrant angle of the pore mouth in Figure 2a.
The free-energy profile in Figure 2a shows a local minimum

(metastable state) in correspondence with the fully wet state at
Φ = 1, a maximum (unstable state, also referred to as transition
state), and the absolute minimum (stable state) at Φ = 0, with
the meniscus pinned at the pore mouth corresponding to the
extruded liquid (not shown). The extrusion free-energy barrier
is defined as ΔΩ† = Ωts − Ωf, where Ωts and Ωf are the free
energy of the transition state (free-energy maximum) and of
the filled pore, respectively.
In order to illustrate how changing the pressure determines

extrusion, we now follow a thought experiment, assuming a
slow variation of the pressure in agreement with the quasi-
static experimental procedure. At the beginning of the
extrusion process, when the pressure is high (30 MPa in the
present experiments), the system is in the fully wet state at Φ =
1; there, the free energy is lower than that at Φ = 0, i.e., ΔΩ =
Ωe − Ωf > 0 and the filled state is more stable than the empty
one. As the pressure decreases, ΔΩ becomes smaller and
eventually, at sufficiently low pressures, becomes negative and
the empty state is more stable than the filled one. However, the
barrier ΔΩ† might still be too large, determining the condition
t ≫ texp, where texp is the experimental time, and the extrusion
is not observed. Upon further reducing the pressure, the barrier
ΔΩ† becomes small enough (ΔΩ† ≈ 25 kBT, corresponding to
t = 1 s) such that t ≤ texp and extrusion takes place. Since ΔΩ†

is an increasing function of ΔP, to understand if a transition
can be observed on the experimental time scale at positive
pressures, it is sufficient to compute the free-energy barrier at
ΔP = 0. The sharp-interface model of the pores yields ΔΩ† ≈
400 kBT at ΔP = 0 (see Figure 2a, cyan line), which implies a
nucleation time t ≈ 10161 s, much larger than the age of the
universe. Only for barriers on the order of 25 kBT it is possible
to observe a transition in an experimentally relevant time.
The previous results show that the smooth, spherical-cap

pore model with contact angle and size approximately matched

Figure 2. Free energy as a function of the filling fraction computed via (a) the macroscopic sharp-interface model and (b) free-energy
molecular dynamics simulations for the pore geometries reported on the side panels with the same color code. (a) The free-energy profiles
close to Φ = 1 are calculated for θY = 115° and for three values of solid fraction, χs = 1 (cyan), χs = 0.62 (black), and χs = 0.23 (orange), as
illustrated in the sketches on the left, where light blue lines represent dry microroughness within the pore walls. (b) The atomistic results are
computed for θY = 118° and different solid fractions: smooth (χs = 1, red), χs = 0.65 (green), and χs = 0.47 (blue); the related free-energy
barriers are ΔΩ† = 155 kBT, 45 kBT, and 5 kBT, respectively. The insets illustrate two different levels of intrusion of the pore by water
corresponding to the free-energy minima of the χs = 0.65 case.
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where ΔP = Pl − Pv, with Pl and Pv the pressures of the bulk
liquid water and vapor, respectively, Φ ≡ Vl/Vp is the filling
fraction defined by the ratio between the liquid volume Vl and
the total volume of the pore Vp, Alv, Asv, and Asl are the liquid−
vapor, solid−vapor, and solid−liquid surface areas, respec-
tively, and γ, γsv, and γsl are the corresponding surface tensions.
As for any thermodynamic potential, Ω is known up to a
constant, which is always set to zero in the following
expressions. The first term on the right-hand side of eq 2
corresponds to the energy of the bulk liquid and vapor in a
system containing both phases. The other three terms account
for the energy cost/gain related to the formation of liquid−
vapor, solid−liquid, and solid−vapor interfaces. Introducing
Young’s law cos θY ≡ (γsv − γsl)/γ, it is possible to recast eq 2
into the form21,22

γ θΩ = Δ − Φ + + +P V A A(1 ) ( cos ) constsv Yp lv (3)

which underscores the competition between γsv and γsl and
provides a geometric interpretation of capillarity, distinguishing
between hydrophobic surfaces (for which θY > 90° implies a
free-energy gain from drying) and hydrophilic (θY < 90°) ones.
The next ingredient required to compute the free-energy

barriers (and thus the nucleation kinetics) is the extrusion path
and the associated free energy.41 Here we use the continuum
rare event method (CREaM),37,42,43 in which the extrusion
path consists of the sequence of the meniscus morphologies
having the lowest free energy at each value of the filling
fraction Φ. The extrusion path originating from this
prescription is a sequence of spherical-cap menisci meeting
the interior of the pore with contact angle θY. In particular, the
vapor bubble delimited by the meniscus increases its volume,
Vv = (1 − Φ)Vp, during extrusion, encompassing the range
between the fully wet (Φ = 1) and the empty pore (Φ = 0).
Within the CREaM framework Alv and Asv are a function of Φ,
and, after setting the remaining thermodynamic parameters to
the experimental values, it was possible to evaluate via eq 2 the
free-energy prof ile as a function of Φ.
The CREaM approach explained above is applied to

minimal pore models designed to capture the essential
topology of the experimental pores together with their size
and surface chemistry: the independent pores of RPB are
schematized as smooth spherical caps of radius rp = 5 nm, with
a mouth of radius rm = 4 nm and with θY = 115° (Figure 2a,

left). The pore model for WC8 will be presented below. Figure
2a reports the free-energy profile connected with extrusion
from the smooth pore with spherical-cap geometry at ΔP = 0
MPa (cyan line). These parameters have been chosen to match
approximately the experimental materials and conditions. In
particular, the theoretical intrusion pressure computed for our
model via the macroscopic (sharp-interface) Laplace’s law,
ΔPint = −2γ cos(θY + α)/rm ≈ 23 MPa, is in fair agreement
with the experimental value, with γ = 0.072 N/m and α = 15°,
where α is the re-entrant angle of the pore mouth in Figure 2a.
The free-energy profile in Figure 2a shows a local minimum

(metastable state) in correspondence with the fully wet state at
Φ = 1, a maximum (unstable state, also referred to as transition
state), and the absolute minimum (stable state) at Φ = 0, with
the meniscus pinned at the pore mouth corresponding to the
extruded liquid (not shown). The extrusion free-energy barrier
is defined as ΔΩ† = Ωts − Ωf, where Ωts and Ωf are the free
energy of the transition state (free-energy maximum) and of
the filled pore, respectively.
In order to illustrate how changing the pressure determines

extrusion, we now follow a thought experiment, assuming a
slow variation of the pressure in agreement with the quasi-
static experimental procedure. At the beginning of the
extrusion process, when the pressure is high (30 MPa in the
present experiments), the system is in the fully wet state at Φ =
1; there, the free energy is lower than that at Φ = 0, i.e., ΔΩ =
Ωe − Ωf > 0 and the filled state is more stable than the empty
one. As the pressure decreases, ΔΩ becomes smaller and
eventually, at sufficiently low pressures, becomes negative and
the empty state is more stable than the filled one. However, the
barrier ΔΩ† might still be too large, determining the condition
t ≫ texp, where texp is the experimental time, and the extrusion
is not observed. Upon further reducing the pressure, the barrier
ΔΩ† becomes small enough (ΔΩ† ≈ 25 kBT, corresponding to
t = 1 s) such that t ≤ texp and extrusion takes place. Since ΔΩ†

is an increasing function of ΔP, to understand if a transition
can be observed on the experimental time scale at positive
pressures, it is sufficient to compute the free-energy barrier at
ΔP = 0. The sharp-interface model of the pores yields ΔΩ† ≈
400 kBT at ΔP = 0 (see Figure 2a, cyan line), which implies a
nucleation time t ≈ 10161 s, much larger than the age of the
universe. Only for barriers on the order of 25 kBT it is possible
to observe a transition in an experimentally relevant time.
The previous results show that the smooth, spherical-cap

pore model with contact angle and size approximately matched

Figure 2. Free energy as a function of the filling fraction computed via (a) the macroscopic sharp-interface model and (b) free-energy
molecular dynamics simulations for the pore geometries reported on the side panels with the same color code. (a) The free-energy profiles
close to Φ = 1 are calculated for θY = 115° and for three values of solid fraction, χs = 1 (cyan), χs = 0.62 (black), and χs = 0.23 (orange), as
illustrated in the sketches on the left, where light blue lines represent dry microroughness within the pore walls. (b) The atomistic results are
computed for θY = 118° and different solid fractions: smooth (χs = 1, red), χs = 0.65 (green), and χs = 0.47 (blue); the related free-energy
barriers are ΔΩ† = 155 kBT, 45 kBT, and 5 kBT, respectively. The insets illustrate two different levels of intrusion of the pore by water
corresponding to the free-energy minima of the χs = 0.65 case.
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Comparison with experiments

both 2D and 3D modes, beginning from below the bottom of the pore
until reaching above the specimen surface was controlled to consume
less than 30 s. This time scale is much smaller than that of air diffusion,
which we identify as the main mechanism driving meniscus
progression.49 Thus, the change in the meniscus shape during each
scan was negligible. The time-series images are integrated and
compiled as an animation to show the whole dynamic progress
visually.55 Unless otherwise noted, the following experiments were
performed with single-level structures such as that shown in Figure 2b.
Results with hierarchical structures such as that shown in Figure 2c are
presented later.

■ RESULTS AND DISCUSSION
Both symmetric and asymmetric collapses of the water−air
interface are shown in Figure 3. The superposition of the

fluorescence (cyan) and reflection (red) images clearly
illustrates the morphology of the water−air and silicon−air/
water interfaces. The first and second rows denote the
symmetric and asymmetric collapse, respectively. Figures 3a
and 3e are line scans taken immediately before the collapse, and
Figures 3c and 3g are immediately after. In both collapse
configurations, the water−air interfaces were similar prior to
the collapse, which exhibited a symmetric sagging about the
central axis of the micropore. However, the dynamic advance
toward the pore bottom differed from each other. For the case
of a symmetric collapse, the air column progressively became
thinner and thinner (Figure 3a) as air diffused into the water.
The meniscus advanced to the bottom gradually, which
eventually induced Newton’s rings (Figure 3b), the interference
pattern created by the reflection of light from the meniscus and
the pore bottom. This means that the distance between the
meniscus and the pore bottom was on the same order of
magnitude of the wave length of the laser, which was 488 nm in
our experiment. Then the meniscus suddenly contacted the
pore bottom concentrically (Figure 3c), leading to a symmetric
collapse. The triple contact line continued to spread out until
the fully wetted Wenzel state was accomplished. Although the
image in Figure 3d appears concentric with the pore bottom,
the spreading usually becomes eccentric while approaching the
pore side walls (not shown). For the case of an asymmetric
collapse, the center of the meniscus was much farther away
from the pore bottom immediately before the occurrence of

collapse (Figure 3e). The triple contact line on the inner side
wall suddenly touched the bottom of the pore (Figure 3g) on a
time scale shorter than the frame interval, leading to an
asymmetric collapse. Subsequently, the contact line on the pore
bottom spread until fully wetting the pore. This asymmetric
collapse was not induced by a direct contact of the meniscus
with the bottom due to its advancing such as in a symmetric
collapse. We ascribe this phenomenon to the loss of interfacial
stability triggered by impurity-induced local microdroplet on
the pore bottom, which we substantiate with further experi-
ments below. 3D movies of both symmetric and asymmetric
collapses animating the dynamic process are included in the
Supporting Information.55

A total of 54 experiments with pressure applied between 15
and 50 kPa have been performed under the direct observation
of confocal microscopy. Among these, 6 exhibited symmetric
collapse and 48 exhibited asymmetric collapse. Without
exception, the partial circle (Figure 3f) was always observed
prior to any asymmetric collapse. Conversely, it was always
absent for all symmetric collapse. On the basis of this strong
correlation between the partial circle and asymmetric collapse,
we hypothesize that these patterns are microdroplet con-
densations facilitated by local impurities. Indeed, we have
captured the droplet-like features in Figure 4. These micro-

droplets were mostly located at the corners of the micropores
(Figure 4a) and triggered the asymmetric collapse with the
meniscus touched and coalesced with them (Figure 4b,c).
Below, we present further experimental evidence to validate this
hypothesis and the genesis of the microdroplets.
We placed a rhodamine-labeled droplet in the volume of 0.2

mL on the sample surface under 1 atm and room temperature.
A 20× water immersion objective was used for observation.
Once the sample was covered with water, circles similar to that
in Figure 3f appeared immediately on the pore bottom. These
features swelled spontaneously and even coalesced with the
ones (indicated by arrows “1” in Figure 5) within the same
micropore. Figure 5 shows the representative morphology of
collapse-triggering circles. Occasionally, some circles expanded
eventually to cover the entire bottom of a micropore (indicated
by arrow “2” in Figure 5). For those cases, we subsequently
took a time series of images of the same micropore along the
pore center plane in line scan mode (the second row of Figure
5). The reflected interface (indicated by arrows “3”) indicates
that it is the upper boundary of the feature growing from the
pore bottom. This boundary proceeded to advance to the upper
water−air interface pinned at the top corner of the micropore.
Eventually, the two interfaces coalesced, which was followed by

Figure 3. Symmetric (a−d) and asymmetric (e−h) collapse of the
water−air interface. (a) and (e) are side-view line scans taken
immediately before the collapse; (b) and (f) are corresponding top
views of the pore bottom. (c) and (g) are side-view line scans taken
immediately after the collapse; (d) and (h) are the corresponding top
views. In (b), Newton’s rings are observed due to the thin air lens
formed between the meniscus and the pore bottom. In (f), a
characteristic collapse-triggering ring is observed.

Figure 4. (a) Droplet-like features were commonly located at the
corners of the pores. (b) A 3D image demonstrates the presence of the
droplet immediately prior to contact with the progressing meniscus.
(c) Coalescence between the meniscus and the droplet.
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pressure: the m(ΔN, N) probabilities at different P are sizably
different. Like in RMD, at low and moderate liquid pressures
(panels A and B) the trajectories are initially (N ≤ 450) sym-
metric, with m(ΔN, N) concentrated about at ΔN = 0. Then,
m(ΔN, N) splits into two branches corresponding to the
bubble-in-the-left and bubble-in-the-right corner configur-
ations. At P = 0.035, however, m(ΔN, N) is concentrated about
zero all along the process, indicating that at high pressures the
mechanism becomes symmetric (Fig. 5C).

The discrepancies between FFS and RMD suggest that
inertia, neglected in the latter approach, plays a crucial role in
the wetting of the cavity when the corresponding barrier is
low, i.e. when the pressure is high: under these pressure con-
ditions the thermodynamic and viscous forces are insufficient
to change the shape of the liquid/gas interface to the
minimum free-energy morphology. This claim is supported by
the observation that the velocity of advancement of the menis-

cus, measured by Ṅ, significantly increases with the liquid
pressure in correspondence of the transition state. This,
indeed, is reflected on the doubling of the Womersley number
with pressure, which goes from α2 ∼ 0.035 at P = −0.005 and
0.01 to α2 ∼ 0.07 at P = 0.035.70 In contrast, we observe no sig-
nificant change of the velocity of bending of the meniscus,
estimated by ΔṄ, with P (Fig. 6).

One question arises: to what extent the phenomena we
observed on the 10 × 10 (3.5 nm × 3.5 nm) texture are relevant
to experimentally accessible lateral scales, ∼10 nm (ref. 15 and
16) or more? As a first, empirical, confirmation that the same
phenomena are relevant also on larger scales, we show that
the transition from the asymmetric to symmetric path when
pressure increases from −0.005 to P = 0.035 is also observed
for a 20 × 20 pore (∼7 nm × 7 nm, – see Fig. SI1†). Concerning
larger, macroscopic, corrugations, continuum fluid dynamics
predicts that the relevance of inertia grows with the character-
istic length of corrugation, as shown by the quadratic depen-
dence of the Womersley number α2 = ρL2/μτ on the cavity
mouth L. Thus, one expects that the role of inertia in the intru-
sion mechanism becomes more relevant for larger
corrugations.

The present results for the nanoscopic corrugations – the
relation between the wetting mechanism, asymmetric or sym-
metric, and the corresponding barrier – allow us to interpret
recent experimental results of Duan and coworkers,24,38 which
conflict with well established (macroscopic) quasi-static the-
ories. Present results show that inertia induces a change in the
wetting mechanism from asymmetric when the barrier is
sizably larger than the thermal energy to symmetric when the
barrier is small. At the same time, one expects that in experi-
ments wetting is observed when the barrier is low as under
these conditions the wetting time is within the experimental
timescale (see eqn (1) and the corresponding discussion).
Thus, we conclude that the symmetric wetting mechanism
observed in experiments are driven by inertial effects, which
are neglected in standard wetting theories. In other words, the
inclusion of inertia allows one to reconcile the mismatch
between theory and experiments.

These conclusions are qualitatively confirmed considering
the transition time τ of FFS wetting simulations (eqn (11)).
Indeed, at low and moderate pressures, P = −0.05 and 0.01,
corresponding to asymmetric wetting paths, the transition
time is 1.5 × 1019 s (∼5 × 1011 years) and 1.5 × 108 s (∼5 years),
respectively, well beyond the typical experimental time (micro-
seconds to minutes). In contrast, at high pressure, P = 0.035, at
which the transition path is symmetric, the transition time is
rather short, 1.5 × 10−8 s (∼15 ns). Transition times in natural
units (NU) have been obtained using the standard conversion
relation τNU ¼ τLJσ

ffiffiffiffiffiffiffiffiffi
m=ε

p
where m is the mass of a water mole-

cule, and ε and σ the Lennard-Jones parameters of the TIP4P2005
water model,71 one of the most widely used water models (see
Note72 for additional information). We remark that τNU is purely
indicative and one should refrain from performing a quantitative
comparison between experimental wetting times and transition
times in natural units. There are several reasons for this, among

Fig. 4 (A) Sequence of snapshots along the wetting (left-to-right) and
recovery (right-to-left) paths as obtained by restrained molecular
dynamics.27,37,69 During the wetting the liquid initially enters in the pore
with a flat meniscus, and then forms a bubble in a corner and finally the
bubble is absorbed and the meniscus touches the bottom wall. The
quasi-static process is reversible and thus the recovery path is the
reverse of the wetting path. (B) Pairs of (ΔN, N) values sampled in RMD
simulations of the wetting/recovery process at P = −0.08. Analogous
graphs for the other pressures are shown in Fig. SM2.† The black dashed
line, introduced to help the reader to follow the wetting/recovery path,
is obtained by connecting the average value of ΔN at each N, 〈ΔN〉N; in
the region in which the graph is split into two parts (N > 450) 〈ΔN〉N is
computed within the domain of each mode. Consistent with the snap-
shots of panel (A), in the early part of the wetting ΔN values are concen-
trated about 0. At N ∼ 450 one observes a sharp change, with sizably
negative and positive ΔN values.
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free-energy barrier is sufficiently low – close to the values at
which the experimental transition is expected to occur –
dynamic effects dominate and the meniscus advances iner-
tially in the pores, preserving the initial symmetric shape. In
addition, our results support the interpretation that the asym-
metric wetting observed from time to time in experiments is
due to the deposition of impurities on the textured walls.
Finally, in contrast with the quasi-static picture,28,31–33,36,37,48,50,51

the present results show that dynamic effects are strongly
dependent on the liquid pressure.

Results and discussion
We investigated the wetting and recovery by the atomistic
simulations summarized below and described it in more detail
in the Methods section. The advantage of atomistic simu-
lations is that all the complex and, possibly, relevant properties
and phenomena, e.g. line and surface tension, and their
dependence on the meniscus curvature during wetting/recov-
ery, are consistently contained in the interaction potential
between the fluid and solid particles. As anticipated in the
Introduction, apart from notable exceptions,34 the wetting and
recovery has been investigated at a theoretical level using
quasi-static approaches, such as suitable extensions of the
classical nucleation theory (CNT28), umbrella sampling (US31),
restrained molecular dynamics (RMD27) or analogous tech-
niques. In quasi-static methods one acts as a Maxwell daemon
increasing or decreasing the level of filling of the pore (Fig. 1)
starting from the empty (wetting) or completely filled pore
(recovery). At each level of filling one computes the properties
of the system, including its (conditional) distribution and
energetics. It must be remarked that under quasi-static con-
ditions the process is reversible and the recovery path is just
the reverse of the wetting one.48

In the present work we use RMD to provide (quasi-static)
reference results for comparison. Here, we control (restrain)
the number of fluid particles in the pore N (Fig. 2A). A conti-
nuum fluid dynamics analysis (Navier–Stokes equations60)

may help understanding the limitations of quasi-static
approaches. In atomistic simulations the wetting/recovery
liquid velocity can be recast into the form u = mṄ/(Aρ), where
Ṅ is liquid particles’ wetting/recovery rate, A is the area of the
pore, and m and ρ are the particle mass and the liquid density,
respectively. In quasi-static approaches Ṅ is set to 0 by the
restraint at any point along the process and so is the liquid vel-
ocity u. This amounts to neglecting inertial over viscous forces,
as quantified by the Womersley number

α2 ¼ 2π Sr Re ¼ ρL 2=μτ ¼ mṄ=μL ¼ 0; ð2Þ

where Sr and Re are the Strouhal and the Reynolds numbers,
respectively, L and τ are the characteristic length and time of
the process, and μ is the dynamic viscosity. The latter form of
eqn (2), α2 = mṄ/μL, gives a formulation of the Womersley
number suitable for atomistic simulations. To show the impor-
tance of inertia in the wetting and recovery mechanism we
consider a complementary approach, namely forward flux
sampling (FFS), that allows sampling reactive trajectories
occurring at a finite wetting/recovery velocity. We remark that
in FFS we release the quasi-static approximation and, in this
case, wetting and recovery might follow different paths. Thus,
we run independent FFS simulations starting from the empty
pore to study wetting and from the filled pore to study
recovery.

Our FFS simulations show that, when wetting and recovery
take place on the experimental timescale, α2 reaches values up
to 0.33 (see below), suggesting that inertia may play an impor-
tant role in modeling these processes. We remark that, when
dimensionless numbers are invaluable to quantify inertial
effects, (mean-field) Navier–Stokes equations cannot be used
to simulate thermally activated processes, where thermal fluc-
tuations are the key to overcome free-energy barriers. The ato-
mistic simulations discussed in the following incorporate such
thermal fluctuations and enabled us to assess the relevance of
inertia in the wetting/recovery process under varying thermo-
dynamic conditions – specifically liquid pressure.

We first consider a Lennard–Jones (LJ) liquid wetting a
surface made of LJ particles and featuring a 10 × 10 ridge
(∼3.5 nm × 3.5 nm if the liquid were water), i.e. a square cavity
extending infinitely in the direction orthogonal to the plane of
Fig. 1. This geometry has been extensively investigated in pre-
vious theoretical28,38,61,62 and computational27,30,48 studies
because despite its simplicity it embodies all the ingredients
governing the wetting/recovery transition.61 The fluid and solid
particles interact via the modified LJ potential

ULJðrijÞ ¼ 4ε
σ
rij

! "12

$cij
σ
rij

! "6# $
; ð3Þ

where rij is the distance between atoms i and j and ε and σ set
the energy and length scale of the particle–particle inter-
actions, respectively. LJ units are used throughout the article
except for barriers, which are reported in kBT units. cij is a
scaling parameter which is equal to 1 for atoms of the same
species (fluid–fluid or solid–solid) and equal to 0.6 for fluid–

Fig. 2 (A) Computational sample used in the simulations. The blue and
brown spheres represent the fluid and solid particles, respectively. The
order parameter N(r) is the number of particles within the white frame.
(B) The red and yellow frames define the boxes used to determine N1

and N2 for the calculation of ΔN = N1(r) − N2(r).
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which we recall that while in experiments the system (typically)
contains air, our computational sample is completely degassed.
This does not affect the wetting path37 but sizably reduces the
transition time in simulations with respect to experiments as
there is no air that must diffuse into the intruding water for
the completion of the process. Here, an important observation is
that, consistent with experiments, when the transition time is
within the experimental timescale the wetting mechanism is
symmetric.

We remark that at the highest pressure, the one at which
the transition time is within the experimental timescale, the
wetting follows only the symmetric path. This suggests that
there is only one wetting channel active at a time, which sup-
ports the conclusion of Duan and coworkers24 that there must

be an external agent, e.g. accumulation of impurities on the
textured walls, inducing the system to follow the asymmetric
wetting. Indeed, impurities may pin the meniscus and prevent
its symmetric advancing. The effect of impurities accumulat-
ing on surface textures on the wetting mechanism will be
investigated in detail in a forthcoming study.

We now consider the recovery process by which vapor is
formed within the pore and pushes the liquid back to the top
of corrugation, restoring the Cassie–Baxter state. We remark
that this process is equivalent to cavitation or bubble nuclea-
tion under confinement, which are important in many
applications.19,73–76 Given the findings on the wetting path, a
question naturally arises: do dynamic effects play an important
role in the recovery path as well? To address this question we

Fig. 5 Logarithm of the probability density, log[m(ΔN,N)], along the wetting (A–C) and recovery (D–F) trajectories at different pressures. We refrain
from using the same representation of Fig. 4 to highlight that while for RMD one refers to the equilibrium distribution data for FFS obtained by
sampling ΔN at prescribed values of N along reactive trajectories. As in the case of Fig. 4, the black dashed line obtained from 〈ΔN〉N is introduced to
guide the eye of the reader. At low (P = −0.005) and moderate (P = 0.01) pressures the wetting follows a path consistent with the quasi-static
picture of panel D. At higher pressures (P = 0.035) m(ΔN, N) is concentrated about ΔN = 0 all along the wetting path. The recovery always follows a
path characterized by initial (N > 400) large positive or negative values of ΔN. However, at small and moderate negative pressures (P = −0.005,
−0.08) in the second part of the path (N < 400 and N < 200, respectively) m(ΔN, N) is concentrated about 0, indicating a recovery of the symmetrical
morphology of the meniscus. At P = −0.08 we observe multiple transition channels, as highlighted by multiple dashed lines in the central part of the
process, between N = 500 and 200. At more negative pressures (P = −0.168) m(ΔN, N) remains centered at large negative or positive values all along
the recovery.
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Conclusions

• Intruision of liquids in textured and porous materials is non trivial

• Continuum models are adequate at predicting the general features of the 
process in relatively simple system
• Semi-quantitative conclusions can be drawn from continuum modeling

• Dynamics/inertia effects must be included

• Crystalline porous materials increase the level of complexity
• Flexibility
• Multiple levels of metastabilities
• Hierarchy of cavities
• …
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