

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858

Thermomechanical and structural properties of {Cu₂(tebpz) MOF + water} molecular spring in a wide temperature range

Sebastiano Merchiori, PhD student sebastiano.merchiori@unife.it

Porous Material	Pore topology	Liquid	P _i [MPa]	P _e [MPa]	ΔV[cm³/g]	E _i [J/g]	E _e [J/g]	Energy recovered	P hysteresis
Cu2(tebpz)	1D	H ₂ O	26-28	26-28	0.12	4.3	4.3	99%	0.6%

- 1 D nanoscale hydrophobic channels
- Mechanical Battery (aka Molecular Spring)
- Negative linear compressibility
- High thermal stability + structural robustness and flexibility after many intrusion-extrusion cycles

ELECTRO INTRUSION

Wang J-H. et al., Chem. Eur. J. **2014**, 20, 12004 – 12008; Grosu Y. et al., Chem. Phys. Chem **2016**, 17, 3359 –3364; Zajdel P. et al., J. Phys. Chem. Lett. **2021**, 12, 4951-4957; Lowe A. et al., Langmuir **2021**, 37, 4827-4835; Chorążewski M. et al., ACS Nano **2021**, 15, 9048-9056

Cu₂L slab

University of Ferrara

E L E C T R O INTRUSION

Cu₂L crystallite

4

Cu₂L slab

Cu₂L crystallite

Consistent with experimental observations -Increasing temperature under a costant pressure results in a non-wetting liquid extrusion from the pores

ρ

Conclusions

- We investigated the phenomenon of intrusion/extrusion driven by both pressure and temperature in Cu2L, a MOF suitable for energy storage and conversion
- Consistently with experiments, and against simplistic models, we have shown that temperature increase can drive extrusion
- We presented preliminary results of the investigation of the origin of this phenomenon: in Cu2L temperature increase brings to a large reduction of confined water density and a contemporary increase of vapor density

Thanks for your attention!

