

Effect of alcohol-water mixture on intrusionextrusion process in nanoporous materials

<u>Andrea Le Donne</u>, Alexander Lowe, Miroslaw Chorazewski, Yaroslav Grosu and Simone Meloni

EMRS – Breakthrough zero-emissions energy storage and conversion technologies for carbon-neutrality

19/09/2022

This project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858

Molecular spring

Extrusion

Intrusion

Pressure

A Volume

DOI: 10.1073/pnas.060243910

E L E C T R O INTRUSION

8.5 -

8.0

7.5

7.0

6.5

5.5

Volume / mL g⁻¹

Example of solution with salts

Shock Adsorber

J. Phys. Chem. C 2019, 123, 25, 15589-15598

J. Phys. Chem. C **2014**, 118, 14, 7321-7328

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Pressure / MPa

Why chose alcohol solution

- More friendly with MOFs;
- Alcohol are soluble;
- they are bigger than typical ions used (they don't enter inside the materials);
- Identify those with a suitable size (and degree of polar groups).

Alcohol solutions

Alcohol solutions

Working hypotheses:

- Possible intrusion of alcohol inside ZIF8
- Formation of "structures" that prevent the intrusion of water molecules

Computational techniques: Classical Molecular Dynamics

 Brute force simulations: standard molecular dynamics of empty ZIF-8 in contact with alcohol solutions of 11.5% wt, 300 K and two pressure. Each simulation is 20 ns long.

Computational techniques: Advance sampling Techniques

Many problems (chemical reactions, diffusion in solids, nucleation, folding and unfolding of proteins) occur on timescale inaccessible by simulations

Affinity between ZIF-8 and solutions

Brute force simulations:

Number density profile along z-axis:

Number of alcohol molecules/volume.

Different behaviour between glycerine and methanol (tert-buthanol) solutions

Affinity between ZIF-8 and solutions

A zoom to highlight the surface-alcohol interactions; it also show the tertbutanol (and methanol) trend to stay close to hexagonal window and to occupy the center of those windows.

Advance sampling Techniques: combining RMD and Parallel Tempering simulations

 Advanced sampling techniques: Restrained Molecular Dynamics (RMD) along a linear path of intrusion coupled with Parallel Tempering techniques (T= 300-350 K). Every single simulation is 1 ns long.

Eq of integration of force

Advance sampling Techniques: combinir RMD and Parallel Tempering simulations

Intrusion Energy profile

Intrusion Energy profile

BIRMINGHAM

Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858

