

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Triboelectrification during intrusion-extrusion of water in mesoporous materials

Luis Bartolomé, Josh Littlefair, <u>Eder Amayuelas</u>, Andrea LeDonne, Simone Meloni, Yaroslav Grosu.

12th International Mesostructured Materials Symposium

8th July 2024, Montpellier (France)

This project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858

1. Introduction

Triboelectric generators

Technology for converting irregular and distributed mechanical energy into electric power by using a conjunction of triboelectrification and electrostatic induction¹.

Wang, Z.L., 2021. From contact electrification to triboelectric nanogenerators. *Reports on Progress in Physics*, *84*, p.096502.
 Luo, J., Wang, Z.L., 2020. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. *EcoMat*, 2(4).

1. Introduction

Surface area

1. Introduction

Intrusion-extrusion process

- (Super)hydrophobic materials: Contact angle >>>90° to enhance the int-ext pressure
- Mesoporous materials: Accessible pores for water intrusion and high surface areas to enhance the surface on int-ext takes place.
- * High intrusion-extrusion hysteresis for a higher energy dissipation

2. Electro-Intrusion project

UNIVERSITY

BIRMINGHAM

Building triboelectric nanogenerators

- Hydrophobic nanoporous materials with highly hysteretic H₂O int-ext performance
 - * Amorphous mesoporous SiO_2 (Φ =15nm)
 - Fluorination of SiO₂ for hydrophobization and improved electrification

- Reliable materials under operation conditions
 - Stable after thousands of int-ext cycles
 - Complete extrusion under high frequencies (real operation cond.)

3. Materials – porous silicas

Grafted Grace 150 – C8-CF₃

- Amorphous SiO2
- Pore size 15 nm
- * Hydrophobized with C₈ fluoroalkyl silanes

Commercial WC8 – C8-CH₃

- Amorphous SiO2
- Pore size 10 nm
- $\ast\,$ Hydrophobized with C_8 alkyl silanes

3. Materials – porous silicas

CIC energi 2024 **GUNE** MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

IMMS

© CIC energiGUNE. 2024. All rights reserved.

IMMS

CIC

© CIC energiGUNE. 2024. All rights reserved.

-O--\$i--CH--R

0

3. Materials – porous silicas

Material	S _{BET} (m²/g)	Pore size BJH (nm)	Pore volume (cm ³ /g)
G150	263 m²/g	12 nm	1,161 cm ³ /g
FG150-EA13	129 m²/g	11 nm	0,410 cm ³ /g
FG150-EA14	100 m²/g	10,5 nm	0,336 cm ³ /g
FG150-EA15	97 m²/g	11 nm	0,314 cm ³ /g

4. Recording triboelectrification

Effect of grafting on triboelectrification

C8-CH₃

5. Material for shock-absorbers

Car shock-absorber prototype

Prof. Victor Stoudenets Team

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

5. Material for shock-absorbers

Kyiv Polytechnic Institute"

¢.

6. Porous conductive approach

Conductive monolithic porous silica preparation

- **Porosity formation applying** electric current
- Formation of vertical pores
- Pore sizes depending on Intensity (7-12 nm)
- Porosity: 45-55%
- ≈7 nm of pore wall
- 10-33 μm of porous thickness

Why Si monoliths?

- Improve electrification contact -> Enhance charge transfer
- Material susceptible for our grafting protocol.

© CIC energiGUNE. 2024. All rights reserved.

Conductive silicon monolith

6. Porous conductive approach

CIC energi gune gune button basque research a sque research a sque research a sque research a sque research

Conductive monolithic porous silica preparation

120 h in non-aqueous ethanolic ammonia solution // 50 °C// CF₃ grafting density: 5 molecules/nm²

Current and voltage results

Si_mono_Gr+_0.3mls_40M_22KΩ

IMMS

2024

CIC

energi

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Grafted porous

silicon monolith

GUNE

Grafted porous

silicon monolith

Peak amplitudes & power density

Maximum power density at ~8 K Ω (optimal load)

Testing different liquids

Testing different liquids

	H ₂ O	D_2O	PEI
ΔΙ [μΑ]	0.29±0.01	0.40±0.01	1.42±0.04
ΔV [mV]	0.96±0.05	2.1±0.01	12.8±0.5
Power density [µW⋅m ⁻²]	1.6±0.08	3.18±0.08	68±4
E₁ [nJ]	17±5	110±5	7000±1300

Electric output: H₂O < D₂O < PEI

7. Conclusions

- Liquid intrusion-extrusion into-from nanopores is accompanied by triboelectrification
- Intrusion-extrusion process allows TENGs with 100-1000 m²/g contact area

Charge transfer in intrusion-extrusion TENGs is a challenge

Thanks for your attention!

This project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858.

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

© CIC energiGUNE. 2024. All rights reserved.