Intrusion of water in hydrophobic crystalline porous materials

Simone.meloni@unife.it ninn I dela L F L A Metastability and multiscale effects in interfacial phenomena Lausanne, 13-15 March 2023

Crystalline porous media: MOFs

Intrusion/extrusion in hydrophobic porous materials: a thought experiment

 $\Omega = \Delta V_v + \gamma \left(A_{lv} + \cos(\theta) A_{sv} \right)$

A. Tintii

Intrusion/extrusion in hydrophobic porous materials: a thought experiment

$\Omega = \Delta P V_v + \gamma \left(A_{lv} + \cos(\theta) A_{sv} \right)$

A. Tintii

onstant, Ewe also tions in the areas nt to express the $I \not\cong \oint_{\partial \Sigma_{sl}} x_{tl} dl, S$ tripte line along $\delta x_n = \cos\theta \, \delta x_{tl},$

her all the varia-

v dS

 $\delta x_{tl} \ dl = 0, \quad (2)$

Thus, thac Inhe liquid-vapor with prescribed) the constraint $_{sv} - \gamma_{sl})/\gamma_{lv} \equiv$ aplace equation it of metastable ndependent; i e ermined by the elow, important n. The pressure ce $h_{\mu, \nu} = p_{\nu}$ is a μ, ν, λ and T. It is as an additional e liquid volume. ated on solutions $\partial I_{\rm eq}/\partial Z$. Since t by (thermodyarly, the equilib-

lace equation is

one is that of minimal $\Omega_{eq}(Z)$ plotted in Fig. 2 [10]. $\Omega_{eq}(Z)$ is defined on three contiguous intervals: [Z_{min}, Z^{*}] (continuous line), [Z^{*}, Z^{**}] (dashed line), and Z^{**}, Z_{max} (dotted-dashed line) each corresponding to a family of Σ_{lv} interfaces of different shape (see the right panel of Fig. 1). When the groove is almost empty, the contact line is pinned to its sharp edges. Here, Σ_{lv} is the family of arcs having curvature $1/R = -2\cos\beta/l$, as sketched in Fig. 1 with a continuous line. For this particular family, condition (ii) is substituted by Gibbs' criterion [13, / which is the equivalent of Young equation of a sharp edge, 7, prescribing $\theta_Y + \phi - \pi \le \beta \le \theta_Y$, where ϕ is the angle formed by the edge and β is defined as in Fig. 1. Ω_{eq} joins smoothly from the first to the sec**ond** domain at $V_l = Z^*$, where $\beta = \theta_{Y}$ (dashed line in Fig. the proof line Reprinted the metricus advances with constant curvature along the groove, and Ω_{ea} scales linearly with Z.

extrusion pressure and hysteresis

 $+\gamma \left(A_{lv} + \cos(\theta)A_{sv}\right)$

 $\tau = \tau_0 \exp \left[\frac{\Delta \Omega_{\text{ing}}}{M_{\text{NOVEMBER 2012}}} k_B T \right]$

responding to a surface Hysteresis originates from the $(1)_{y}$ (1) to a geometr 0.5 ing one rectangular _____ ve as in Fig. 1, by recover guader pressure you must apply different thermodynamic conditions at changingratheobarrier to become ~1 k_BT given V, T, and system geometry. This is tantamount to 3 0.5 changing $p_1 - p_v$ [1]]. Although for more complicated extrusion barriers geometries numerical schemes need to be developed start-ing from the generat theory, in this 2D geometry it is -0.2 possible 25 to derive an analytical expression for the grave teresis by tuning the tace equations is $\theta_{FIO}f_2$ (color potential as a function of the Mirepuid volume filling the lace equation is The equation is a function of the poppalizer volume of light inside the that at given Z a plethora of een CB and W $Av(p,g^{p,p})/\Delta p$ of the of $A^{p,q}$ and A^{0} . (The consist angle xists, each formed by a collection groove having to be $\theta_{Y} = 110^{\circ}$ and the crect work of the groove $\alpha = 100^{\circ}$ such formed by a collection netrie areashed). The grant potential is shifted so that the West the liquid-vapor interfaces having con-

Crystalline porous media: MOFs

Giant Negative Compressibility by Liquid Intrusion into Superhydrophobic Flexible Nanoporous Framework Tortora et al, Nano Letters 21, 2848-2853

ECTRO

Int/ext free energy profile vs pressure

Single water molecules "intrusion"

Percolation

Slow intrusion cannot be due to single water molecules crossing 6MR apertures: barrier very low, very low intrusion pressure and no hysteresis

Turning molecular spring into nano-shock absorber: the effect of macroscopic morphology and crystal size on the dynamic hysteresis of water intrusion-extrusion into-from hydrophobic nanopores, Zajdel et al., ACS Appl. Mater. Interfaces 2022, 14, 26699

Proposed mechanism: capillary condensation

Grand Canonical simulations

Sun et al. "High-rate nanofluidic energy absorption in porous zeolitic frameworks", Nat. Mater. 20, 1015 (2021).

Mismatch with experimental evidence

On the mechanism of water intrusion into flexible ZIF-8: liquid is not vapor, Amayuelas et al, submitted [

Cage-by-cage intrusion mechanism

Origin of the intrusion barrier

E L E C T R O NTRUSION

Why cage-by-cage intrusion

Paulo et al, Comm. Phys. 6, 21 2023

$$t_f = t_f^0 e^{\frac{\Omega_f^{\dagger}}{k_B T}}$$

$$t_e = t_e^0 e^{\frac{\Omega_e^{\dagger}}{k_B T}}$$

Effective surface tension in a (porous) medium

Crystallite size dependency in intrusion

Optimization of the Wetting-Drying Characteristics of Hydrophobic Metal Organic Frameworks via Crystallite Size: The Role of Hydrogen Bonding between Intruded and Bulk Liquid, Johnson et al, submitted

Intruded volume shrinking with decreasing size

Stochastic model of intrusion in crystallites

ARIAE UNIVE

"Stiffened" ZIF-8

Knebel et al., "Defibrillation of soft porous metal-organic frameworks with electric fields", Science 358, 347 (2017)

Intrusion in a in-plane rigid slab

Interplay between physics of intrusion and chemistry of imidazolate

Zn-N-C-C dihedral angle

Conclusions

- Kinetics and int/ext pressures in nanometric materials with sub-nanometric apertures violate Young-Laplace, which previously we have shown to work for slightly larger apertures
- The process is not capillary condensation, it still looks like front advancing-like, minimizing the pseudo-liquid/pseudovapor interface area
- This mechanism determines the crystallite size dependence of the int/ext pressure
- Stiffened material shows that there is an unknown connection between the physics of intrusion and the chemistry of imidazolate linker

Acknowledgements

Marco Tortora

Carlo Massimo Casciola

Seb Merchiori

Josh Littlefair

Andrea Le Donne

Yaroslav Grosu

Alberto Giacomello

Alberto Giacomello

H2020-FET Electro-Intrusion

