

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Contact electrification during water intrusionextrusion into-from nanopores for self-powered pressure/temperature nanosensors and thermomechanical energy harvesting

LUIS BARTOLOMÉ

13th Colloids Conference

11th June 2024, Sitges (Spain)

This project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858

13th International COLLOIDS CONFERENCE

Sitges, Barcelona, Spain

© CIC energiGUNE. 2024. All rights reserved.

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Index

- 1. Introduction
- 2. Monolith configuration
- 3. Nanoporous silica configuration
- 4. Electro-Intrusion project
- 5. Conclusions

13th International

© CIC energiGUNE. 2024. All rights reserved.

Triboelectric generators

Technology for converting irregular and distributed mechanical energy into electric power by using a conjunction of triboelectrification and electrostatic induction¹.

Wang, Z.L., 2021. From contact electrification to triboelectric nanogenerators. *Reports on Progress in Physics*, 84, p.096502.
 Luo, J., Wang, Z.L., 2020. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. *EcoMat*, 2(4).

CIC

Surface area

CIC

Intrusion-extrusion process

CIC

13th International COLLOIDS CONFERENCE Sitges, Barcelona, Spain

GUNE MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

CIC

Silicon monolith preparation

13th International COLLOIDS CONFERENCE Sitges, Barcelona, Spain

CIC

Silicon monolith configuration R **Grafted porous** silicon monolith H₂O ****************

Compression/decompression tests

9

Monolith intrusion-extrusion triboelectrification principle

© CIC energiGUNE. 2024. All rights reserved. Jiang, P., Zhang, L., Guo, H., Chen, C., Wu, C., Zhang, S. and Wang, Z.L., 2019. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Advanced Materials, 31(39), p.1902793.

Grafted porous silicon monolith

Si-monolith: current and voltage results

Si_mono_Gr+_0.3mls_40M_22KQ

Maximum power density at ~10 K Ω (optimal load)

CIC

3th International

COLLOIDS CONFERENCE

13th International COLLOIDS CONFERENCE Sitges, Barcelona, Spain

CIC

Si-monolith: different liquids

Si-monolith: different liquids

	H ₂ O	D ₂ O	PEI
ΔΙ [μΑ]	0.29±0.01	0.40±0.01	1.42±0.04
ΔV [mV]	0.96±0.05	2.1±0.01	12.8±0.5
Power density [µW⋅m ⁻²]	1.6±0.08	3.18±0.08	68±4
E₁ [nJ]	17±5	110±5	7000±1300

Electric output: H₂O < D₂O < PEI

© CIC energiGUNE. 2024. All rights reserved.

Si-monolith: challenge low intrusion volume

GUNE AEMBER OF BASQUE RESEARCH TECHNOLOGY ALLIANCE

Passive configuration: powder silica

Compression/decompression tests

13th International COLLOIDS CONFERENCE

CIC

Passive conf.: intrusion-extrusion triboelectrification principle

CIC

Passive conf.: powder silica triboelectrification results

CIC

3th International

COLLOIDS CONFERENCE

Passive configuration: effect of speed and temperature

GUNE MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Active configuration: powder silica

Compression/decompression tests

GUNE MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

CIC

Active conf.: powder silica triboelectrification results

Powder silica: passive vs. active configurations

The power density increases 4 times

115500

200

250

GUNE BASQUE RESEARCH TECHNOLOGY ALLIANCE

Active configuration: silica stability

Degradation: peak amplitudes one order of magnitude lower

CIC

Figure of merit comparison

Power density [µW/m²]	Voltage [V]	Frequency [Hz]	FOM ^[a] [(10 ³ ·µW)/mm²·Hz·V²]	Туре	Reference	
924	8	250	5.8·10 ⁻⁵	Electrostatic	Basset et al [a]	$FOM = \frac{1}{2}$
100·10 ⁶	60	2	13.9	Electrowetting	Krupenkin et al.[b]	$f \cdot V_h^2 \cdot A$
100·10 ⁶	4.5	300	16.5	Electrowetting	Hsu et al.[c]	
960	1.2	6	0.1	Electrowetting	Huynh et al. ^[d]	P-nower
110·10 ⁶	24	3	63.4	Electrowetting	Yang et al.[e]	f = frequency
38.2·10 ⁶	6	4	265.27	NTE	Liu et al [f]	J = frequency
533	0.01	3	1776.7	Electrowetting	Adhikari et al. [9]	V_b – blas voltage
30	0	10	œ	Electrowetting	Kim et al.[h]	A – electrode area
3·10 ⁶	4	Quasistatic	35456	NTE	Our project ¹	
38	0	Quasistatic	œ	NTE		
115	0.5	Quasistatic	260.4	NTE	Our project ²	 Double-electrode: WC8 touching both electrodes Double-electrode: WC8 touching one electrode

[a] Basset, P., Galayko, D., Paracha, F.M., Marty, F., Dudka, A. & Bourouina, T. A batch-fabricated an electret-free silicon electrostatic vibration energy harvester. J. Micromech. Microeng. 19, 115025 (2009)
[b] Krupenkin, T. & Taylor, J. A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2, 1–8 (2011)
[c] Hsu, T. H., Manakasettharn, S., Taylor, J. A. & Krupenkin, T. Bubbler: a novel ultra-high-power density energy harvesting method based on reverse electrowetting. Sci. Rep. 5, 16537 (2015)
[d] Huynh, D.Het al. Environmentally friendly power generator based on moving liquid dielectric and double layer effect. Sci. Rep. 6, 1–10 (2016)
[e] Yang, H., Hong, S., Koo, B., Lee, D. & Kim, Y. B. High-performance reverse electrowetting energy harvesting using atomic-layer-deposited dielectric film. Nano Energy 31, 450–455 (2017)
[f] Liu, W., Wang, Z., Wang, G., Liu, G., Chen, J., Pu, X., Xi, Y., Wang, X., Guo, H., Hu, C. & Wang, Z.L. Integrated charge excitation triboelectric nanogenerator. Nat Commun. 10, 1-9 (2019)
[g] Adhikari, P.R., Tasneem, N.T., Reid, R.C. & Mahbub, I. Electrode and electrolyte configurations for low frequency motion energy harvesting based on reverse electrowetting. Sci. Rep. 11, 5030 (2021)
[h] Kim et al. Energy harvesting performance of an EDLC power generator based on pure water and glycerol mixture: analytical modeling and experimental validation. Sci Rep 11, 23426 (2021)

Consortium of FET Proactive project (Horizon 2020)

GUNE MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

CIC

Aims & goals

Car shock-absorber prototype

#ScienceForUkraine

© CIC energiGUNE. 2024. All rights reserved.

Prof. Victor Stoudenets Team

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

© CIC energiGUNE. 2024. All rights reserved.

CIC

energi

GUNE

13th International

Sitges, Barcelona, Spain

COLLOIDS CONFERENCE

5. Conclusions

SQUE RESEARCH

- Liquid intrusion-extrusion into-from nanopores is accompanied by electrification
- Intrusion-extrusion process allows TENGs with ~1000 m²/g contact area \succ

Charge transfer in intrusion-extrusion TENGs is a challenge

Thanks for your attention!

This project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101017858.

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

© CIC energiGUNE. 2024. All rights reserved.